A382454 Number of solutions winning the Tchoukaillon game with n seeds and 2n pits.
1, 2, 9, 49, 285, 1717, 10569, 66013, 416687, 2651355, 16976806, 109256095, 706071989, 4579020513, 29784426945, 194231327451, 1269457354069, 8313189986612, 54534379879411, 358298017624625, 2357331709694072, 15528887031395023, 102412421113465576, 676104332189192702
Offset: 0
Keywords
Links
- Mancala World, Tchoukaillon
Programs
-
Maple
a:= n-> coeff(series(mul((1-q^j)/(1-q), j=1..2*n+1), q, n+1), q, n): seq(a(n), n=0..23); # Alois P. Heinz, May 27 2025
-
Mathematica
a[n_]:=Coefficient[Series[Product[(1-q^j)/(1-q),{j,1,2*n+1}],{q,0,n+1}]//Normal,q,n];Array[a, 24, 0] (* Shenghui Yang, Jun 02 2025 *)
-
Python
def a(n): if n == 0: return 1 p = [1] for j in range(1, (n << 1) + 2): np = [0] * (len(p) + j - 1) for k in range(len(p)): for l in range(j): if (kl:=k+l) <= n: np[kl] += p[k] p = np[:n+1] return p[n] print([a(n) for n in range(1,24)])
Formula
a(n) = T(2n,n) with T(x,y) = Sum_{v=0..min(x,y)} T(x-1, y-v) and T(0,y) = 1 if y = 0 else 0.
a(n) = A008302(2n+1,n).
Comments