cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382503 a(n) = Sum_{d|n} binomial(2*d-1,d).

Original entry on oeis.org

1, 4, 11, 39, 127, 476, 1717, 6474, 24321, 92508, 352717, 1352589, 5200301, 20060020, 77558897, 300546669, 1166803111, 4537592436, 17672631901, 68923356953, 269128938947, 1052049834580, 4116715363801, 16123803200574, 63205303219003, 247959271674356
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 10 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2 d - 1, d], {d, Divisors[n]}], {n, 1, 26}]
    nmax = 26; CoefficientList[Series[Sum[Binomial[2 k - 1, k] x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, binomial(2*d-1,d)); \\ Michel Marcus, Apr 17 2025

Formula

G.f.: Sum_{k>=1} binomial(2*k-1,k) * x^k / (1 - x^k).
a(n) = [(x*y)^n] Sum_{k>=1} x^k / (1 - x^k - y^k).
a(n) = Sum_{d|n} A088218(d).
a(n) = Sum_{d|n} A001700(d-1).
a(n) = Sum_{d|n} A045630(d) * A000005(n/d).
a(n) = A072929(n) / 2.