A382536
Expansion of 1/(1 - x*(1 + 4*x)^(3/2)).
Original entry on oeis.org
1, 1, 7, 19, 63, 221, 679, 2365, 7499, 25351, 82043, 274031, 892263, 2972127, 9686899, 32261819, 105124711, 350277365, 1140610399, 3803874525, 12372800403, 41319077557, 134176480535, 448958154449, 1454582791283, 4879992151217, 15762304059447, 53067612190093
Offset: 0
-
R := PowerSeriesRing(Rationals(), 40); f := 1/(1 - x*(1 + 4*x)^(3/2)); seq := [ Coefficient(f, n) : n in [0..30] ]; seq; // Vincenzo Librandi, Apr 01 2025
-
Table[Sum[4^(n-k)*Binomial[3*k/2,n-k],{k,0,n}],{n,0,35}] (* Vincenzo Librandi, Apr 01 2025 *)
-
a(n) = sum(k=0, n, 4^(n-k)*binomial(3*k/2, n-k));
A382515
Expansion of 1/(1 - x/(1 - 4*x)^(5/2)).
Original entry on oeis.org
1, 1, 11, 91, 691, 5101, 37323, 272405, 1987047, 14493479, 105718071, 771148119, 5625136651, 41032826127, 299316769887, 2183389173811, 15926906427179, 116180104751925, 847485191674867, 6182049517420133, 45095462188117951, 328952511222499589, 2399570809473795931
Offset: 0
-
Table[Sum[4^(n-k)*Binomial[n+3*k/2-1,n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Mar 30 2025 *)
-
a(n) = sum(k=0, n, 4^(n-k)*binomial(n+3*k/2-1, n-k));
A382542
Expansion of 1/(1 - x/(1 - 4*x)^(3/2))^3.
Original entry on oeis.org
1, 3, 24, 172, 1191, 8091, 54214, 359274, 2358945, 15365815, 99399132, 639081780, 4086689187, 26006041209, 164767882902, 1039787209898, 6537976304109, 40973438195025, 255998969164612, 1594973077037136, 9911483124031335, 61443351455986359, 380044418794190118
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( 1/(1 - x/(1 - 4*x)^(3/2))^3)); // Vincenzo Librandi, May 12 2025
-
Table[Sum[(4)^(n-k)* Binomial[k+2,2]*Binomial[n+k/2-1, n-k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, May 12 2025 *)
-
a(n) = sum(k=0, n, 4^(n-k)*binomial(k+2, 2)*binomial(n+k/2-1, n-k));
A382541
Expansion of 1/(1 - x/(1 - 4*x)^(3/2))^2.
Original entry on oeis.org
1, 2, 15, 100, 645, 4098, 25795, 161256, 1002513, 6203434, 38230951, 234774948, 1437193101, 8773022374, 53416562787, 324488659784, 1967025910873, 11901070329414, 71878009609591, 433411746865948, 2609477469570885, 15689257525890666, 94208451895149123
Offset: 0
-
R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( 1/(1 - x/(1-4*x)^(3/2))^2)); // Vincenzo Librandi, May 12 2025
-
Table[Sum[(4)^(n-k)* (k+1)* Binomial[n+k/2-1,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, May 12 2025 *)
-
a(n) = sum(k=0, n, 4^(n-k)*(k+1)*binomial(n+k/2-1, n-k));
Showing 1-4 of 4 results.
Comments