A382534 Number of minimum total dominating sets in the n-flower graph.
3, 9, 9, 36, 15, 81, 21, 36, 27, 225, 33, 36, 39, 441, 45, 36, 51, 729, 57, 36, 63, 1089, 69, 36, 75, 1521, 81, 36, 87, 2025, 93, 36, 99, 2601, 105, 36, 111, 3249, 117, 36
Offset: 1
Links
- Eric Weisstein's World of Mathematics, Flower Graph.
- Eric Weisstein's World of Mathematics, Minimum Total Dominating Set.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,-3,0,0,0,1).
Programs
-
Mathematica
Table[Piecewise[{{36, Mod[n, 4] == 0}, {3 n, Mod[n, 2] == 1}, {9 n^2/4, Mod[n, 4] == 2}}], {n, 20}] LinearRecurrence[{0, 0, 0, 3, 0, 0, 0, -3, 0, 0, 0, 1}, {3, 9, 9, 36, 15, 81, 21, 36, 27, 225, 33, 36}, 20]
Formula
a(n) = 3*a(n-4)-3*a(n-8)+a(n-12).
G.f.: -3*x*(1+3*x+3*x^2+12*x^3+2*x^4+18*x^5-2*x^6-24*x^7-3*x^8+3*x^9-x^10+12*x^11)/(x-1)^3/(1+x)^3/(x^2+1)^3 . - R. J. Mathar, Apr 02 2025
Comments