cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A382540 Expansion of 1/(1 - x/(1 - 4*x)^(1/2))^3.

Original entry on oeis.org

1, 3, 12, 52, 231, 1035, 4650, 20898, 93849, 420935, 1885248, 8430588, 37642819, 167824905, 747143298, 3321632498, 14747814597, 65397373761, 289652172896, 1281454446408, 5663228541975, 25002457308487, 110275917725658, 485935158536874, 2139412626785505
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2025

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( 1/(1 - x/(1 - 4*x)^(1/2))^3)); // Vincenzo Librandi, May 12 2025
  • Mathematica
    Table[Sum[(4)^(n-k)* Binomial[k+2,2]*Binomial[n-k/2-1, n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, May 12 2025 *)
  • PARI
    a(n) = sum(k=0, n, 4^(n-k)*binomial(k+2, 2)*binomial(n-k/2-1, n-k));
    

Formula

a(n) = Sum_{k=0..n} 4^(n-k) * binomial(k+2,2) * binomial(n-k/2-1,n-k).
D-finite with recurrence 3*(-n+1)*a(n) +6*(6*n-11)*a(n-1) +2*(-71*n+199)*a(n-2) +4*(44*n-183)*a(n-3) +3*(11*n+5)*a(n-4) +2*(-2*n+7)*a(n-5)=0. - R. J. Mathar, Apr 02 2025

A382541 Expansion of 1/(1 - x/(1 - 4*x)^(3/2))^2.

Original entry on oeis.org

1, 2, 15, 100, 645, 4098, 25795, 161256, 1002513, 6203434, 38230951, 234774948, 1437193101, 8773022374, 53416562787, 324488659784, 1967025910873, 11901070329414, 71878009609591, 433411746865948, 2609477469570885, 15689257525890666, 94208451895149123
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2025

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!( 1/(1 - x/(1-4*x)^(3/2))^2)); // Vincenzo Librandi, May 12 2025
  • Mathematica
    Table[Sum[(4)^(n-k)* (k+1)* Binomial[n+k/2-1,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, May 12 2025 *)
  • PARI
    a(n) = sum(k=0, n, 4^(n-k)*(k+1)*binomial(n+k/2-1, n-k));
    

Formula

a(n) = Sum_{k=0..n} 4^(n-k) * (k+1) * binomial(n+k/2-1,n-k).
D-finite with recurrence (-n+1)*a(n) +2*(8*n-13)*a(n-1) +(-95*n+217)*a(n-2) +2*(126*n-359)*a(n-3) +128*(-2*n+7)*a(n-4)=0. - R. J. Mathar, Apr 02 2025

A382647 Expansion of 1/(1 - x*(1 + 4*x)^(1/2))^2.

Original entry on oeis.org

1, 2, 7, 12, 37, 50, 187, 128, 1057, -502, 7679, -14420, 73453, -212554, 843019, -2848064, 10602409, -37875706, 139533151, -510006524, 1885309253, -6974175142, 25940881947, -96731191728, 361980829841, -1358121976978, 5109416286295, -19267391982612
Offset: 0

Views

Author

Seiichi Manyama, Apr 02 2025

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 28); Coefficients(R!( 1/(1 - x*(1 + 4*x)^(1/2))^2)); // Vincenzo Librandi, May 13 2025
  • Mathematica
    Table[Sum[4^(n-k)* (k+1)* Binomial[k/2, n-k],{k,0,n}],{n,0,28}] (* Vincenzo Librandi, May 13 2025 *)
  • PARI
    a(n) = sum(k=0, n, 4^(n-k)*(k+1)*binomial(k/2, n-k));
    

Formula

a(n) = Sum_{k=0..n} 4^(n-k) * (k+1) * binomial(k/2,n-k).
Showing 1-3 of 3 results.