cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382612 a(n) = n^3 * (n^2 - n + 1).

Original entry on oeis.org

0, 1, 24, 189, 832, 2625, 6696, 14749, 29184, 53217, 91000, 147741, 229824, 344929, 502152, 712125, 987136, 1341249, 1790424, 2352637, 3048000, 3898881, 4930024, 6168669, 7644672, 9390625, 11441976, 13837149, 16617664, 19828257, 23517000, 27735421, 32538624, 37985409, 44138392, 51064125, 58833216, 67520449, 77204904, 87970077, 99904000, 113099361, 127653624
Offset: 0

Views

Author

Wesley Ivan Hurt, Mar 31 2025

Keywords

Comments

Product of the entries in the corners of an n X n square array with elements 1..n^2 listed in increasing order by rows (see example).

Examples

			                                                        [1   2  3  4  5]
                                        [1   2  3  4]   [6   7  8  9 10]
                              [1 2 3]   [5   6  7  8]   [11 12 13 14 15]
                     [1 2]    [4 5 6]   [9  10 11 12]   [16 17 18 19 20]
             [1]     [3 4]    [7 8 9]   [13 14 15 16]   [21 22 23 24 25]
  ------------------------------------------------------------------------
    n         1        2         3            4                 5
  ------------------------------------------------------------------------
              1     1*2*3*4   1*3*7*9     1*4*13*16         1*5*21*25
  ------------------------------------------------------------------------
    a(n)      1       24        189          832               2625
		

Crossrefs

Cf. A088020 (product of all entries).
Cf. A382532 (product along main antidiagonal).
Cf. A382620 (product along border).

Programs

  • Magma
    [n^3*(n^2 - n + 1) : n in [0..50]]; // Wesley Ivan Hurt, Apr 15 2025
  • Mathematica
    Table[n^3 (n^2 - n + 1), {n, 0, 60}]

Formula

G.f.: x*(1+18*x+60*x^2+38*x^3+3*x^4)/(x-1)^6. - R. J. Mathar, Apr 02 2025
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6). - Wesley Ivan Hurt, Apr 15 2025