A382620 a(n) = n^(2*n-4) * (n!)^2 * (n^2)! * Pochhammer(1+1/n, n-1) / ((n^2-n+1) * (n^2-n)!).
1, 24, 72576, 4528742400, 2423748096000000, 6787796602812825600000, 72775351435975459999580160000, 2410818176289650624878632291532800000, 211160088068074747246458003999015567360000000, 43450506124990177923906533235556142284800000000000000, 19145311724106592586650799558102522667408683773722624000000000
Offset: 1
Keywords
Examples
[1 2 3 4 5] [1 2 3 4] [6 7 8 9 10] [1 2 3] [5 6 7 8] [11 12 13 14 15] [1 2] [4 5 6] [9 10 11 12] [16 17 18 19 20] [1] [3 4] [7 8 9] [13 14 15 16] [21 22 23 24 25] ------------------------------------------------------------------------ n 1 2 3 4 5 ------------------------------------------------------------------------ a(n) 1 24 72576 4528742400 2423748096000000
Programs
-
Mathematica
Table[n^(2n - 4)*(n!)^2*(n^2)!*Pochhammer[1 + 1/n, n - 1]/((n^2 - n + 1)*(n^2 - n)!), {n, 12}]
Formula
a(n) ~ 2^(3/2) * Pi^(3/2) * n^(7*n - 11/2) / exp(3*n + 1/2). - Vaclav Kotesovec, Apr 01 2025
Comments