cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382640 a(n) = 90*binomial(n,6) + 90*binomial(n,5) + 54*binomial(n,4) + 24*binomial(n,3) + 9*binomial(n,2) + 3*n + 1.

Original entry on oeis.org

1, 4, 16, 61, 217, 706, 2074, 5461, 12961, 28072, 56236, 105469, 187081, 316486, 514102, 806341, 1226689, 1816876, 2628136, 3722557, 5174521, 7072234, 9519346, 12636661, 16563937, 21461776, 27513604, 34927741, 43939561, 54813742, 67846606, 83368549, 101746561
Offset: 0

Views

Author

Enrique Navarrete, Apr 01 2025

Keywords

Comments

a(n) is the number of words of length n defined on 4 symbols where three chosen symbols (say, the three largest ones) are used at most twice.

Examples

			a(3) = 61 since from the 64 words defined on {0, 1, 2, 3} we subtract the three words 111, 222, 333.
		

Crossrefs

Cf. A382618.

Formula

a(n) = 37 - 94*(n+1) + (187/2)*(n+1)^2 - (373/8)*(n+1)^3 + (103/8)*(n+1)^4 - (15/8)*(n+1)^5 + (1/8)*(n+1)^6.
E.g.f.: (1 + x + x^2/2)^3*exp(x).
G.f.: (1 - 3*x + 9*x^2 - 2*x^3 + 21*x^4 + 27*x^5 + 37*x^6)/(1 - x)^7. - Stefano Spezia, Apr 01 2025