cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A382649 Expansion of 1/(1 - x*(1 + 4*x)^(3/2))^2.

Original entry on oeis.org

1, 2, 15, 52, 213, 834, 3043, 11576, 41601, 152458, 544039, 1950132, 6895773, 24403302, 85542339, 300101048, 1044436937, 3639851814, 12594713911, 43660404108, 150357976533, 518991977194, 1780132570723, 6122965091976, 20928650616113, 71779065646510, 244590689773839
Offset: 0

Views

Author

Seiichi Manyama, Apr 02 2025

Keywords

Comments

a(82) is negative.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 28); Coefficients(R!( 1/(1 - x*(1 + 4*x)^(3/2))^2)); // Vincenzo Librandi, May 13 2025
  • Mathematica
    Table[Sum[4^(n-k)* (k+1)* Binomial[3*k/2, n-k],{k,0,n}],{n,0,28}] (* Vincenzo Librandi, May 13 2025 *)
  • PARI
    a(n) = sum(k=0, n, 4^(n-k)*(k+1)*binomial(3*k/2, n-k));
    

Formula

a(n) = Sum_{k=0..n} 4^(n-k) * (k+1) * binomial(3*k/2,n-k).

A382648 Expansion of 1/(1 - x*(1 + 4*x)^(1/2))^3.

Original entry on oeis.org

1, 3, 12, 28, 87, 171, 522, 810, 2985, 2583, 18528, -5244, 141875, -241815, 1393314, -3905782, 16326069, -54884079, 209607744, -752322624, 2812050471, -10351091321, 38636724474, -143916146094, 539225694641, -2023036045635, 7615213571172, -28722320569796, 108591659035131
Offset: 0

Views

Author

Seiichi Manyama, Apr 02 2025

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 28); Coefficients(R!( 1/(1 - x*(1 + 4*x)^(1/2))^3)); // Vincenzo Librandi, May 13 2025
  • Mathematica
    Table[Sum[4^(n-k)* Binomial[k+2,2]* Binomial[k/2, n-k],{k,0,n}],{n,0,28}] (* Vincenzo Librandi, May 13 2025 *)
  • PARI
    a(n) = sum(k=0, n, 4^(n-k)*binomial(k+2, 2)*binomial(k/2, n-k));
    

Formula

a(n) = Sum_{k=0..n} 4^(n-k) * binomial(k+2,2) * binomial(k/2,n-k).
Showing 1-2 of 2 results.