A382657 Number of minimum total dominating sets in the n-Goldberg graph.
16, 277, 10, 2386, 28, 33301, 360, 10, 4334, 60, 67288, 728, 10, 9856, 102, 150750, 1292, 10, 19222, 154, 299368, 2124, 10, 34112, 216, 549276, 3306, 10, 56730, 288, 951456, 4930, 10, 89916, 370, 1576202, 7098, 10, 137268, 462, 2518596, 9922, 10, 203274, 564, 3905148, 13524, 10
Offset: 3
Links
- Andrew Howroyd, Table of n, a(n) for n = 3..1000
- Eric Weisstein's World of Mathematics, Goldberg Graph.
- Eric Weisstein's World of Mathematics, Minimum Total Dominating Set.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,9, 0,0,0,0,-36, 0,0,0,0,84, 0,0,0,0,-126, 0,0,0,0,126, 0,0,0,0,-84, 0,0,0,0,36, 0,0,0,0,-9, 0,0,0,0,1).
Crossrefs
Cf. A382431.
Programs
-
PARI
a(n) = { my(m=n\5+1,r=-n%5); if(n<=8, [16, 277, 10, 2386, 28, 33301][n-2], if(r<=2, if(r==0, 10, n*if(r==1, (m + 13)*(m^2 + 2*m + 24)/12, (m^7 + 70*m^6 + 1750*m^5 + 39340*m^4 + 525889*m^3 + 2944270*m^2 + 15922920*m + 12216960)/20160)), n*if(r==3, (m + 2), (m^5 + 35*m^4 + 365*m^3 + 5485*m^2 + 21114*m + 16200)/360) )) } \\ Andrew Howroyd, May 24 2025
Formula
a(5*n) = 10.
From Andrew Howroyd, May 24 2025: (Start)
a(5*n-1) = (5*n-1)*(n + 13)*(n^2 + 2*n + 24)/12 for n >= 2;
a(5*n-2) = (5*n-2)*(n^7 + 70*n^6 + 1750*n^5 + 39340*n^4 + 525889*n^3 + 2944270*n^2 + 15922920*n + 12216960)/20160 for n >= 3;
a(5*n-3) = (5*n-3)*(n + 2) for n >= 2;
a(5*n-4) = (5*n-4)*(n^5 + 35*n^4 + 365*n^3 + 5485*n^2 + 21114*n + 16200)/360 for n >= 3. (End)
Extensions
a(8)-a(12) from Eric W. Weisstein, May 11 2025
a(13) onwards from Andrew Howroyd, May 24 2025
Comments