cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382657 Number of minimum total dominating sets in the n-Goldberg graph.

Original entry on oeis.org

16, 277, 10, 2386, 28, 33301, 360, 10, 4334, 60, 67288, 728, 10, 9856, 102, 150750, 1292, 10, 19222, 154, 299368, 2124, 10, 34112, 216, 549276, 3306, 10, 56730, 288, 951456, 4930, 10, 89916, 370, 1576202, 7098, 10, 137268, 462, 2518596, 9922, 10, 203274, 564, 3905148, 13524, 10
Offset: 3

Views

Author

Eric W. Weisstein, Apr 02 2025

Keywords

Comments

For n > 3, the total domination number is given by 2*floor((7*n+4)/5) = 2*A047332(n+1). For n = 3, the total domination number is 9. - Andrew Howroyd, May 24 2025

Crossrefs

Cf. A382431.

Programs

  • PARI
    a(n) = { my(m=n\5+1,r=-n%5); if(n<=8, [16, 277, 10, 2386, 28, 33301][n-2], if(r<=2, if(r==0, 10, n*if(r==1, (m + 13)*(m^2 + 2*m + 24)/12, (m^7 + 70*m^6 + 1750*m^5 + 39340*m^4 + 525889*m^3 + 2944270*m^2 + 15922920*m + 12216960)/20160)), n*if(r==3, (m + 2), (m^5 + 35*m^4 + 365*m^3 + 5485*m^2 + 21114*m + 16200)/360) )) } \\ Andrew Howroyd, May 24 2025

Formula

a(5*n) = 10.
From Andrew Howroyd, May 24 2025: (Start)
a(5*n-1) = (5*n-1)*(n + 13)*(n^2 + 2*n + 24)/12 for n >= 2;
a(5*n-2) = (5*n-2)*(n^7 + 70*n^6 + 1750*n^5 + 39340*n^4 + 525889*n^3 + 2944270*n^2 + 15922920*n + 12216960)/20160 for n >= 3;
a(5*n-3) = (5*n-3)*(n + 2) for n >= 2;
a(5*n-4) = (5*n-4)*(n^5 + 35*n^4 + 365*n^3 + 5485*n^2 + 21114*n + 16200)/360 for n >= 3. (End)

Extensions

a(8)-a(12) from Eric W. Weisstein, May 11 2025
a(13) onwards from Andrew Howroyd, May 24 2025