A382683 Expansion of (1-x^2) / (1-x-3*x^2+x^3).
1, 1, 3, 5, 13, 25, 59, 121, 273, 577, 1275, 2733, 5981, 12905, 28115, 60849, 132289, 286721, 622739, 1350613, 2932109, 6361209, 13806923, 29958441, 65018001, 141086401, 306181963, 664423165, 1441882653, 3128970185, 6790194979, 14735222881, 31976837633
Offset: 0
Examples
Consider walks starting at 0 in the following graph: 2 /| 0-1 | \| 3 The 5 walks of length 3 are 0-1-0-1, 0-1-2-1, 0-1-2-3, 0-1-3-1, and 0-1-3-2.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,3,-1).
Crossrefs
Programs
-
Maple
a:= n-> (<<0|1|0>, <0|0|1>, <-1|3|1>>^n. <<1,1,3>>)[1,1]: seq(a(n), n=0..32); # Alois P. Heinz, Jun 04 2025
-
Mathematica
LinearRecurrence[{1,3,-1},{1,1,3},33] (* or *) CoefficientList[Series[ (1-x^2) / (1-x-3*x^2+x^3),{x,0,32}],x] (* James C. McMahon, Jun 02 2025 *)
Comments