A382735
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / (exp(x) + exp(y) - exp(x+y))^3.
Original entry on oeis.org
1, 0, 0, 0, 3, 0, 0, 3, 3, 0, 0, 3, 27, 3, 0, 0, 3, 75, 75, 3, 0, 0, 3, 171, 579, 171, 3, 0, 0, 3, 363, 2667, 2667, 363, 3, 0, 0, 3, 747, 10083, 22779, 10083, 747, 3, 0, 0, 3, 1515, 34635, 142923, 142923, 34635, 1515, 3, 0, 0, 3, 3051, 112899, 761211, 1396803, 761211, 112899, 3051, 3, 0
Offset: 0
Square array begins:
1, 0, 0, 0, 0, 0, ...
0, 3, 3, 3, 3, 3, ...
0, 3, 27, 75, 171, 363, ...
0, 3, 75, 579, 2667, 10083, ...
0, 3, 171, 2667, 22779, 142923, ...
0, 3, 363, 10083, 142923, 1396803, ...
-
a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+2, 2)*stirling(n, j, 2)*stirling(k, j, 2));
A382737
a(n) = Sum_{k=0..n} k! * (k+1)! * Stirling2(n,k)^2.
Original entry on oeis.org
1, 2, 14, 254, 8654, 467102, 36414734, 3862847774, 534433092494, 93409669590302, 20117959360842254, 5233190283794276894, 1617259866279958581134, 585633786711715561283102, 245587300036701328750786574, 118067003149791582488105955614, 64502003996859329263691323378574
Offset: 0
-
f:= proc(n) local k; add(k!*(k+1)!*Stirling2(n,k)^2, k=0..n) end proc:
map(f, [$0..40]);
-
Table[Sum[k! * (k+1)! * StirlingS2[n,k]^2, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Apr 13 2025 *)
-
a(n) = sum(k=0, n, k!*(k+1)!*stirling(n, k, 2)^2);
A382736
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / (exp(x) + exp(y) - exp(x+y))^4.
Original entry on oeis.org
1, 0, 0, 0, 4, 0, 0, 4, 4, 0, 0, 4, 44, 4, 0, 0, 4, 124, 124, 4, 0, 0, 4, 284, 1084, 284, 4, 0, 0, 4, 604, 5164, 5164, 604, 4, 0, 0, 4, 1244, 19804, 48044, 19804, 1244, 4, 0, 0, 4, 2524, 68524, 313804, 313804, 68524, 2524, 4, 0, 0, 4, 5084, 224284, 1707884, 3281404, 1707884, 224284, 5084, 4, 0
Offset: 0
Square array begins:
1, 0, 0, 0, 0, 0, ...
0, 4, 4, 4, 4, 4, ...
0, 4, 44, 124, 284, 604, ...
0, 4, 124, 1084, 5164, 19804, ...
0, 4, 284, 5164, 48044, 313804, ...
0, 4, 604, 19804, 313804, 3281404, ...
-
a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+3, 3)*stirling(n, j, 2)*stirling(k, j, 2));
A382740
Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] (1/2) * (1 / (exp(x) + exp(y) - exp(x+y))^2 - 1).
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 19, 19, 1, 1, 43, 127, 43, 1, 1, 91, 559, 559, 91, 1, 1, 187, 2071, 4327, 2071, 187, 1, 1, 379, 7039, 25831, 25831, 7039, 379, 1, 1, 763, 22807, 133783, 233551, 133783, 22807, 763, 1, 1, 1531, 71839, 636679, 1748791, 1748791, 636679, 71839, 1531, 1
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 7, 19, 43, 91, 187, ...
1, 19, 127, 559, 2071, 7039, ...
1, 43, 559, 4327, 25831, 133783, ...
1, 91, 2071, 25831, 233551, 1748791, ...
1, 187, 7039, 133783, 1748791, 18207367, ...
-
a(n, k) = sum(j=0, min(n, k), j!*(j+1)!*stirling(n, j, 2)*stirling(k, j, 2))/2;
A382799
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / (1 - log(1-x) * log(1-y))^2.
Original entry on oeis.org
1, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 4, 14, 4, 0, 0, 12, 40, 40, 12, 0, 0, 48, 144, 260, 144, 48, 0, 0, 240, 648, 1284, 1284, 648, 240, 0, 0, 1440, 3528, 6936, 9588, 6936, 3528, 1440, 0, 0, 10080, 22608, 42744, 65928, 65928, 42744, 22608, 10080, 0, 0, 80640, 166896, 300240, 476808, 581952, 476808, 300240, 166896, 80640, 0
Offset: 0
Square array begins:
1, 0, 0, 0, 0, 0, ...
0, 2, 2, 4, 12, 48, ...
0, 2, 14, 40, 144, 648, ...
0, 4, 40, 260, 1284, 6936, ...
0, 12, 144, 1284, 9588, 65928, ...
0, 48, 648, 6936, 65928, 581952, ...
-
a(n, k) = sum(j=0, min(n, k), j!*(j+1)!*abs(stirling(n, j, 1)*stirling(k, j, 1)));
Showing 1-5 of 5 results.