A382673
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] exp(x+y) / (exp(x) + exp(y) - exp(x+y))^3.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 10, 10, 1, 1, 22, 52, 22, 1, 1, 46, 208, 208, 46, 1, 1, 94, 736, 1372, 736, 94, 1, 1, 190, 2440, 7516, 7516, 2440, 190, 1, 1, 382, 7792, 37012, 60316, 37012, 7792, 382, 1, 1, 766, 24328, 170668, 418996, 418996, 170668, 24328, 766, 1, 1, 1534, 74896, 754132, 2653036, 3964684, 2653036, 754132, 74896, 1534, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 4, 10, 22, 46, 94, ...
1, 10, 52, 208, 736, 2440, ...
1, 22, 208, 1372, 7516, 37012, ...
1, 46, 736, 7516, 60316, 418996, ...
1, 94, 2440, 37012, 418996, 3964684, ...
...
-
a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+2, 2)*stirling(n+1, j+1, 2)*stirling(k+1, j+1, 2));
A382734
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / (exp(x) + exp(y) - exp(x+y))^2.
Original entry on oeis.org
1, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 2, 14, 2, 0, 0, 2, 38, 38, 2, 0, 0, 2, 86, 254, 86, 2, 0, 0, 2, 182, 1118, 1118, 182, 2, 0, 0, 2, 374, 4142, 8654, 4142, 374, 2, 0, 0, 2, 758, 14078, 51662, 51662, 14078, 758, 2, 0, 0, 2, 1526, 45614, 267566, 467102, 267566, 45614, 1526, 2, 0
Offset: 0
Square array begins:
1, 0, 0, 0, 0, 0, ...
0, 2, 2, 2, 2, 2, ...
0, 2, 14, 38, 86, 182, ...
0, 2, 38, 254, 1118, 4142, ...
0, 2, 86, 1118, 8654, 51662, ...
0, 2, 182, 4142, 51662, 467102, ...
-
a(n, k) = sum(j=0, min(n, k), j!*(j+1)!*stirling(n, j, 2)*stirling(k, j, 2));
A382736
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / (exp(x) + exp(y) - exp(x+y))^4.
Original entry on oeis.org
1, 0, 0, 0, 4, 0, 0, 4, 4, 0, 0, 4, 44, 4, 0, 0, 4, 124, 124, 4, 0, 0, 4, 284, 1084, 284, 4, 0, 0, 4, 604, 5164, 5164, 604, 4, 0, 0, 4, 1244, 19804, 48044, 19804, 1244, 4, 0, 0, 4, 2524, 68524, 313804, 313804, 68524, 2524, 4, 0, 0, 4, 5084, 224284, 1707884, 3281404, 1707884, 224284, 5084, 4, 0
Offset: 0
Square array begins:
1, 0, 0, 0, 0, 0, ...
0, 4, 4, 4, 4, 4, ...
0, 4, 44, 124, 284, 604, ...
0, 4, 124, 1084, 5164, 19804, ...
0, 4, 284, 5164, 48044, 313804, ...
0, 4, 604, 19804, 313804, 3281404, ...
-
a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+3, 3)*stirling(n, j, 2)*stirling(k, j, 2));
A382738
a(n) = Sum_{k=0..n} (k!)^2 * binomial(k+2,2) * Stirling2(n,k)^2.
Original entry on oeis.org
1, 3, 27, 579, 22779, 1396803, 121998267, 14333812419, 2175860165499, 414000255441603, 96422983358827707, 26970211126038920259, 8918364340126714711419, 3440770498298077165166403, 1531504734740033368269820347, 778873986278207207346380124099
Offset: 0
-
Table[Sum[k! * (k+2)! * StirlingS2[n,k]^2/2, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Aug 30 2025 *)
-
a(n) = sum(k=0, n, k!^2*binomial(k+2, 2)*stirling(n, k, 2)^2);
A382741
Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] (1/3) * (1 / (exp(x) + exp(y) - exp(x+y))^3 - 1).
Original entry on oeis.org
1, 1, 1, 1, 9, 1, 1, 25, 25, 1, 1, 57, 193, 57, 1, 1, 121, 889, 889, 121, 1, 1, 249, 3361, 7593, 3361, 249, 1, 1, 505, 11545, 47641, 47641, 11545, 505, 1, 1, 1017, 37633, 253737, 465601, 253737, 37633, 1017, 1, 1, 2041, 118969, 1228249, 3657721, 3657721, 1228249, 118969, 2041, 1
Offset: 1
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 9, 25, 57, 121, 249, ...
1, 25, 193, 889, 3361, 11545, ...
1, 57, 889, 7593, 47641, 253737, ...
1, 121, 3361, 47641, 465601, 3657721, ...
1, 249, 11545, 253737, 3657721, 40666089, ...
-
a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+2, 2)*stirling(n, j, 2)*stirling(k, j, 2))/3;
A382800
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / (1 - log(1-x) * log(1-y))^3.
Original entry on oeis.org
1, 0, 0, 0, 3, 0, 0, 3, 3, 0, 0, 6, 27, 6, 0, 0, 18, 78, 78, 18, 0, 0, 72, 282, 588, 282, 72, 0, 0, 360, 1272, 2988, 2988, 1272, 360, 0, 0, 2160, 6936, 16344, 24612, 16344, 6936, 2160, 0, 0, 15120, 44496, 101448, 175632, 175632, 101448, 44496, 15120, 0
Offset: 0
Square array begins:
1, 0, 0, 0, 0, 0, ...
0, 3, 3, 6, 18, 72, ...
0, 3, 27, 78, 282, 1272, ...
0, 6, 78, 588, 2988, 16344, ...
0, 18, 282, 2988, 24612, 175632, ...
0, 72, 1272, 16344, 175632, 1669128, ...
-
a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+2, 2)*abs(stirling(n, j, 1)*stirling(k, j, 1)));
Showing 1-6 of 6 results.