cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A382735 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / (exp(x) + exp(y) - exp(x+y))^3.

Original entry on oeis.org

1, 0, 0, 0, 3, 0, 0, 3, 3, 0, 0, 3, 27, 3, 0, 0, 3, 75, 75, 3, 0, 0, 3, 171, 579, 171, 3, 0, 0, 3, 363, 2667, 2667, 363, 3, 0, 0, 3, 747, 10083, 22779, 10083, 747, 3, 0, 0, 3, 1515, 34635, 142923, 142923, 34635, 1515, 3, 0, 0, 3, 3051, 112899, 761211, 1396803, 761211, 112899, 3051, 3, 0
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2025

Keywords

Examples

			Square array begins:
  1, 0,   0,     0,      0,       0, ...
  0, 3,   3,     3,      3,       3, ...
  0, 3,  27,    75,    171,     363, ...
  0, 3,  75,   579,   2667,   10083, ...
  0, 3, 171,  2667,  22779,  142923, ...
  0, 3, 363, 10083, 142923, 1396803, ...
		

Crossrefs

Main diagonal gives A382738.

Programs

  • PARI
    a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+2, 2)*stirling(n, j, 2)*stirling(k, j, 2));

Formula

E.g.f.: 1 / (exp(x) + exp(y) - exp(x+y))^3.
A(n,k) = A(k,n).
A(n,k) = Sum_{j=0..min(n,k)} (j!)^2 * binomial(j+2,2) * Stirling2(n,j) * Stirling2(k,j).

A382737 a(n) = Sum_{k=0..n} k! * (k+1)! * Stirling2(n,k)^2.

Original entry on oeis.org

1, 2, 14, 254, 8654, 467102, 36414734, 3862847774, 534433092494, 93409669590302, 20117959360842254, 5233190283794276894, 1617259866279958581134, 585633786711715561283102, 245587300036701328750786574, 118067003149791582488105955614, 64502003996859329263691323378574
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2025

Keywords

Crossrefs

Main diagonal of A382734.

Programs

  • Maple
    f:= proc(n) local k;  add(k!*(k+1)!*Stirling2(n,k)^2, k=0..n) end proc:
    map(f, [$0..40]);
  • Mathematica
    Table[Sum[k! * (k+1)! * StirlingS2[n,k]^2, {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Apr 13 2025 *)
  • PARI
    a(n) = sum(k=0, n, k!*(k+1)!*stirling(n, k, 2)^2);

Formula

a(n) == 0 (mod 2) for n > 0.
a(n) = (n!)^2 * [(x*y)^n] 1 / (exp(x) + exp(y) - exp(x+y))^2.
a(n) ~ sqrt(Pi) * n^(2*n + 3/2) / (4 * sqrt(1 - log(2)) * exp(2*n) * log(2)^(2*n+2)). - Vaclav Kotesovec, Apr 13 2025

A382739 a(n) = Sum_{k=0..n} (k!)^2 * binomial(k+3,3) * Stirling2(n,k)^2.

Original entry on oeis.org

1, 4, 44, 1084, 48044, 3281404, 316032044, 40592233084, 6687195379244, 1372291071723004, 342877475325619244, 102409872018962876284, 36014541870868393113644, 14724003012156426011095804, 6922777830859189006847193644, 3708347961746448904830944962684
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2025

Keywords

Crossrefs

Main diagonal of A382736.
Cf. A382678.

Programs

  • PARI
    a(n) = sum(k=0, n, k!^2*binomial(k+3, 3)*stirling(n, k, 2)^2);

Formula

a(n) == 0 (mod 4) for n > 0.
a(n) = (n!)^2 * [(x*y)^n] 1 / (exp(x) + exp(y) - exp(x+y))^4.

A382806 a(n) = Sum_{k=0..n} (k!)^2 * binomial(k+2,2) * Stirling1(n,k)^2.

Original entry on oeis.org

1, 3, 27, 588, 24612, 1669128, 165049224, 22269896064, 3918921022656, 870149951146944, 237662482188210624, 78249086559726140160, 30547324837444471084800, 13946361918619108837939200, 7359961832428044552536217600, 4444946383758589481684168540160
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2025

Keywords

Crossrefs

Main diagonal of A382800.
Cf. A382738.

Programs

  • PARI
    a(n) = sum(k=0, n, k!^2*binomial(k+2, 2)*stirling(n, k, 1)^2);

Formula

a(n) == 0 (mod 3) for n > 0.
a(n) = (n!)^2 * [(x*y)^n] 1 / (1 - log(1-x) * log(1-y))^3.
a(n) = (n!)^2 * [(x*y)^n] 1 / (1 - log(1+x) * log(1+y))^3.
a(n) ~ sqrt(Pi) * n^(2*n + 5/2) / (2 * (exp(1) - 1)^(2*n+3)). - Vaclav Kotesovec, Apr 05 2025

A382847 a(n) = Sum_{k=0..n} binomial(n+k-1,k) * (Stirling2(n,k) * k!)^2.

Original entry on oeis.org

1, 1, 14, 579, 48044, 6647405, 1379024730, 400315753159, 154879704709784, 77018569697097009, 47863427797633958630, 36348262891572161261963, 33119479438137288670256964, 35660343372397246917403353013, 44791475616825872944740798413234, 64911462519379469821754507087299215
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 06 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n + k - 1, k] (StirlingS2[n, k] k!)^2, {k, 0, n}], {n, 0, 15}]
    Table[(n!)^2 SeriesCoefficient[1/(Exp[x] + Exp[y] - Exp[x + y])^n, {x, 0, n}, {y, 0, n}], {n, 0, 15}]
  • PARI
    a(n) = sum(k=0, n, binomial(n+k-1, k)*(k!*stirling(n, k, 2))^2); \\ Seiichi Manyama, Apr 06 2025

Formula

a(n) = (n!)^2 * [(x*y)^n] 1 / (exp(x) + exp(y) - exp(x + y))^n.
a(n) == 0 (mod n) for n > 0. - Seiichi Manyama, Apr 06 2025
a(n) ~ c * (r*(1+r)*(1 + 2*r + 2*sqrt(r*(1+r))))^n * n^(2*n) / exp(2*n), where r = 0.78386040488712123296193324113250946749673854534386788724235... is the root of the equation r = (1+r) * (1 + 1/(r*LambertW(-exp(-1/r)/r)))^2 and c = 0.947509273452712778524331973956110163137127694168427319... - Vaclav Kotesovec, Apr 08 2025
Showing 1-5 of 5 results.