A382800
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / (1 - log(1-x) * log(1-y))^3.
Original entry on oeis.org
1, 0, 0, 0, 3, 0, 0, 3, 3, 0, 0, 6, 27, 6, 0, 0, 18, 78, 78, 18, 0, 0, 72, 282, 588, 282, 72, 0, 0, 360, 1272, 2988, 2988, 1272, 360, 0, 0, 2160, 6936, 16344, 24612, 16344, 6936, 2160, 0, 0, 15120, 44496, 101448, 175632, 175632, 101448, 44496, 15120, 0
Offset: 0
Square array begins:
1, 0, 0, 0, 0, 0, ...
0, 3, 3, 6, 18, 72, ...
0, 3, 27, 78, 282, 1272, ...
0, 6, 78, 588, 2988, 16344, ...
0, 18, 282, 2988, 24612, 175632, ...
0, 72, 1272, 16344, 175632, 1669128, ...
-
a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+2, 2)*abs(stirling(n, j, 1)*stirling(k, j, 1)));
A382804
a(n) = Sum_{k=0..n} k! * (k+1)! * Stirling1(n,k)^2.
Original entry on oeis.org
1, 2, 14, 260, 9588, 581952, 52096512, 6423520896, 1041005447424, 214260350714496, 54547409318781312, 16820040059243046144, 6175245603727007034624, 2661063379044058584861696, 1329787781176741647226481664, 762665713456216694195942866944
Offset: 0
-
a(n) = sum(k=0, n, k!*(k+1)!*stirling(n, k, 1)^2);
A382828
a(n) = Sum_{k=0..n} (k!)^2 * binomial(k+2,2) * Stirling1(n+1,k+1)^2.
Original entry on oeis.org
1, 4, 55, 1623, 82116, 6302028, 680105112, 98011315608, 18163969766592, 4205977241171328, 1189459906531372224, 403300593144673493184, 161454763431242385682176, 75337361633768810384542464, 40524573487904551618353921024, 24890567631479746511661428751360
Offset: 0
-
a(n) = sum(k=0, n, k!^2*binomial(k+2, 2)*stirling(n+1, k+1, 1)^2);
A382853
a(n) = Sum_{k=0..n} binomial(n+k-1,k) * (k! * Stirling1(n,k))^2.
Original entry on oeis.org
1, 1, 14, 588, 51064, 7542780, 1688795184, 532244030976, 224335607135616, 121793234373123840, 82750681453274478720, 68773648886955417943296, 68628724852793337500166144, 80970628401965472953705395200, 111490683570184861858636405923840, 177177650274516448010905794637332480
Offset: 0
-
Table[Sum[Binomial[n+k-1,k] * k!^2 * StirlingS1[n,k]^2, {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Apr 07 2025 *)
-
a(n) = sum(k=0, n, binomial(n+k-1, k)*(k!*stirling(n, k, 1))^2);
Showing 1-4 of 4 results.