cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A382806 a(n) = Sum_{k=0..n} (k!)^2 * binomial(k+2,2) * Stirling1(n,k)^2.

Original entry on oeis.org

1, 3, 27, 588, 24612, 1669128, 165049224, 22269896064, 3918921022656, 870149951146944, 237662482188210624, 78249086559726140160, 30547324837444471084800, 13946361918619108837939200, 7359961832428044552536217600, 4444946383758589481684168540160
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2025

Keywords

Crossrefs

Main diagonal of A382800.
Cf. A382738.

Programs

  • PARI
    a(n) = sum(k=0, n, k!^2*binomial(k+2, 2)*stirling(n, k, 1)^2);

Formula

a(n) == 0 (mod 3) for n > 0.
a(n) = (n!)^2 * [(x*y)^n] 1 / (1 - log(1-x) * log(1-y))^3.
a(n) = (n!)^2 * [(x*y)^n] 1 / (1 - log(1+x) * log(1+y))^3.
a(n) ~ sqrt(Pi) * n^(2*n + 5/2) / (2 * (exp(1) - 1)^(2*n+3)). - Vaclav Kotesovec, Apr 05 2025

A382799 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / (1 - log(1-x) * log(1-y))^2.

Original entry on oeis.org

1, 0, 0, 0, 2, 0, 0, 2, 2, 0, 0, 4, 14, 4, 0, 0, 12, 40, 40, 12, 0, 0, 48, 144, 260, 144, 48, 0, 0, 240, 648, 1284, 1284, 648, 240, 0, 0, 1440, 3528, 6936, 9588, 6936, 3528, 1440, 0, 0, 10080, 22608, 42744, 65928, 65928, 42744, 22608, 10080, 0, 0, 80640, 166896, 300240, 476808, 581952, 476808, 300240, 166896, 80640, 0
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2025

Keywords

Examples

			Square array begins:
  1,  0,   0,    0,     0,      0, ...
  0,  2,   2,    4,    12,     48, ...
  0,  2,  14,   40,   144,    648, ...
  0,  4,  40,  260,  1284,   6936, ...
  0, 12, 144, 1284,  9588,  65928, ...
  0, 48, 648, 6936, 65928, 581952, ...
		

Crossrefs

Main diagonal gives A382804.

Programs

  • PARI
    a(n, k) = sum(j=0, min(n, k), j!*(j+1)!*abs(stirling(n, j, 1)*stirling(k, j, 1)));

Formula

E.g.f.: 1 / (1 - log(1-x) * log(1-y))^2.
A(n,k) = A(k,n).
A(n,k) = Sum_{j=0..min(n,k)} j! * (j+1)! * |Stirling1(n,j)| * |Stirling1(k,j)|.

A382827 a(n) = Sum_{k=0..n} k! * (k+1)! * Stirling1(n+1,k+1)^2.

Original entry on oeis.org

1, 3, 34, 854, 37556, 2546852, 246113904, 32104625520, 5433891955968, 1157778241057152, 303197684900579712, 95717977509042032256, 35847800701044816248064, 15713483696924130220098816, 7969364997624587289470810112, 4630203661005094483980386924544
Offset: 0

Views

Author

Seiichi Manyama, Apr 06 2025

Keywords

Crossrefs

Main diagonal of A382824.

Programs

  • PARI
    a(n) = sum(k=0, n, k!*(k+1)!*stirling(n+1, k+1, 1)^2);

Formula

a(n) = (n!)^2 * [(x*y)^n] 1 / ( (1-x) * (1-y) * (1 - log(1-x) * log(1-y))^2 ).
a(n) = (n!)^2 * [(x*y)^n] 1 / ( (1+x) * (1+y) * (1 - log(1+x) * log(1+y))^2 ).

A382853 a(n) = Sum_{k=0..n} binomial(n+k-1,k) * (k! * Stirling1(n,k))^2.

Original entry on oeis.org

1, 1, 14, 588, 51064, 7542780, 1688795184, 532244030976, 224335607135616, 121793234373123840, 82750681453274478720, 68773648886955417943296, 68628724852793337500166144, 80970628401965472953705395200, 111490683570184861858636405923840, 177177650274516448010905794637332480
Offset: 0

Views

Author

Seiichi Manyama, Apr 06 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n+k-1,k] * k!^2 * StirlingS1[n,k]^2, {k, 0, n}], {n, 0, 15}] (* Vaclav Kotesovec, Apr 07 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+k-1, k)*(k!*stirling(n, k, 1))^2);

Formula

a(n) == 0 (mod n) for n > 0.
a(n) = (n!)^2 * [(x*y)^n] 1 / (1 - log(1-x) * log(1-y))^n.
a(n) = (n!)^2 * [(x*y)^n] 1 / (1 - log(1+x) * log(1+y))^n.
a(n) ~ c * (r*(1+r) + sqrt(r*(1+r)))^(2*n) * n^(2*n) / (exp(2*n) * r^n), where r = 0.71197519729041875298209529969157574831688314013967... is the root of the equation (1+r)*(r + LambertW(-1, -r*exp(-r)))^2 = r and c = 0.61294561390083215776201123658816241786650851195222... - Vaclav Kotesovec, Apr 07 2025
Showing 1-4 of 4 results.