A382735
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / (exp(x) + exp(y) - exp(x+y))^3.
Original entry on oeis.org
1, 0, 0, 0, 3, 0, 0, 3, 3, 0, 0, 3, 27, 3, 0, 0, 3, 75, 75, 3, 0, 0, 3, 171, 579, 171, 3, 0, 0, 3, 363, 2667, 2667, 363, 3, 0, 0, 3, 747, 10083, 22779, 10083, 747, 3, 0, 0, 3, 1515, 34635, 142923, 142923, 34635, 1515, 3, 0, 0, 3, 3051, 112899, 761211, 1396803, 761211, 112899, 3051, 3, 0
Offset: 0
Square array begins:
1, 0, 0, 0, 0, 0, ...
0, 3, 3, 3, 3, 3, ...
0, 3, 27, 75, 171, 363, ...
0, 3, 75, 579, 2667, 10083, ...
0, 3, 171, 2667, 22779, 142923, ...
0, 3, 363, 10083, 142923, 1396803, ...
-
a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+2, 2)*stirling(n, j, 2)*stirling(k, j, 2));
A382674
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] exp(x+y) / (exp(x) + exp(y) - exp(x+y))^4.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 13, 13, 1, 1, 29, 77, 29, 1, 1, 61, 325, 325, 61, 1, 1, 125, 1181, 2357, 1181, 125, 1, 1, 253, 3973, 13621, 13621, 3973, 253, 1, 1, 509, 12797, 69269, 118061, 69269, 12797, 509, 1, 1, 1021, 40165, 326005, 862261, 862261, 326005, 40165, 1021, 1
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 5, 13, 29, 61, 125, ...
1, 13, 77, 325, 1181, 3973, ...
1, 29, 325, 2357, 13621, 69269, ...
1, 61, 1181, 13621, 118061, 862261, ...
1, 125, 3973, 69269, 862261, 8712245, ...
...
-
a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+3, 3)*stirling(n+1, j+1, 2)*stirling(k+1, j+1, 2));
A382676
a(n) = Sum_{k=0..n} (k!)^2 * binomial(k+2,2) * Stirling2(n+1,k+1)^2.
Original entry on oeis.org
1, 4, 52, 1372, 60316, 3964684, 363503932, 44280657292, 6913081723516, 1345238707327564, 319137578070718012, 90648956570718822412, 30369040605677566161916, 11848724306426305222109644, 5325560174867275152102351292, 2731649923185995549312271694732
Offset: 0
-
a(n) = sum(k=0, n, k!^2*binomial(k+2, 2)*stirling(n+1, k+1, 2)^2);
A382825
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where A(n,k) = n! * k! * [x^n * y^k] 1 / ( (1-x) * (1-y) * (1 - log(1-x) * log(1-y))^3 ).
Original entry on oeis.org
1, 1, 1, 2, 4, 2, 6, 11, 11, 6, 24, 39, 55, 39, 24, 120, 174, 255, 255, 174, 120, 720, 942, 1338, 1623, 1338, 942, 720, 5040, 6012, 8106, 10434, 10434, 8106, 6012, 5040, 40320, 44244, 56292, 72762, 82116, 72762, 56292, 44244, 40320, 362880, 369072, 442860, 560988, 668580, 668580, 560988, 442860, 369072, 362880
Offset: 0
Square array begins:
1, 1, 2, 6, 24, 120, ...
1, 4, 11, 39, 174, 942, ...
2, 11, 55, 255, 1338, 8106, ...
6, 39, 255, 1623, 10434, 72762, ...
24, 174, 1338, 10434, 82116, 668580, ...
120, 942, 8106, 72762, 668580, 6302028, ...
-
a(n, k) = sum(j=0, min(n, k), j!^2*binomial(j+2, 2)*abs(stirling(n+1, j+1, 1)*stirling(k+1, j+1, 1)));
A382675
a(n) = 4 - 15 * 2^n + 12 * 3^n.
Original entry on oeis.org
1, 10, 52, 208, 736, 2440, 7792, 24328, 74896, 228520, 693232, 2095048, 6315856, 19009000, 57149872, 171695368, 515577616, 1547715880, 4645113712, 13939273288, 41825684176, 125492781160, 376509800752, 1129592316808, 3388902779536, 10166959996840
Offset: 0
Showing 1-5 of 5 results.