A382744 If k appears, 5*k does not.
1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 36, 37, 38, 39, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84
Offset: 1
Keywords
Examples
5 is removed since 5 = 5*1, 10 is removed, 15 is removed, 20 is removed, but 25 remains.
Links
- Jan Snellman, Table of n, a(n) for n = 1..8333
- Jan Snellman, Greedy Regular Convolutions, arXiv:2504.02795 [math.NT], 2025.
Programs
-
Maple
select(t -> padic:-ordp(t,5)::even, [$1..100]); # Robert Israel, Apr 04 2025
-
Mathematica
Select[Range[100], EvenQ[IntegerExponent[#, 5]] &] (* Amiram Eldar, Apr 04 2025 *)
-
Python
def ok(n): c = 0 while n and n%5 == 0: n //= 5; c += 1 return c&1 == 0 print([k for k in range(1, 82) if ok(k)]) # Michael S. Branicky, Apr 04 2025
-
Python
from sympy import integer_log def A382744(n): def f(x): return n+x-sum((k:=x//5**m)-k//5 for m in range(0,integer_log(x,5)[0]+1,2)) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Apr 10 2025
-
SageMath
[ for in range(1,100) if (valuation(_,5) % 2) == 0]
Formula
a(n) ~ (6/5)*n.
Comments