A382745 If k appears, 7*k does not.
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 82, 83, 85
Offset: 1
Examples
7 is removed since 7 = 7*1, 14, 21, 28, 35, 42 are removed, but 49 remains.
Links
- Jan Snellman, Table of n, a(n) for n = 1..8751
- Jan Snellman, Greedy Regular Convolutions, arXiv:2504.02795 [math.NT], 2025.
Programs
-
Maple
q:= n-> is(irem(padic[ordp](n,7), 2)=0): select(q, [$1..85])[]; # Alois P. Heinz, Apr 04 2025
-
Mathematica
Select[Range[100], EvenQ[IntegerExponent[#, 7]] &] (* Amiram Eldar, Apr 04 2025 *)
-
Python
def ok(n): c = 0 while n and n%7 == 0: n //= 7; c += 1 return c&1 == 0 print([k for k in range(1, 86) if ok(k)]) # Michael S. Branicky, Apr 04 2025
-
Python
from sympy import integer_log def A382745(n): def f(x): return n+x-sum((k:=x//7**m)-k//7 for m in range(0,integer_log(x,7)[0]+1,2)) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Apr 10 2025
Formula
a(n) ~ (8/7)*n.
Comments