A382776 Triangle read by rows: T(n,k) is the number of ways to place 2*n rooks on a (n+k) X (2*n-k) board so that there is at least one rook in every column and row and so that each rook is defended by another.
1, 1, 1, 6, 9, 6, 90, 180, 180, 90, 2520, 6300, 8100, 6300, 2520, 113400, 340200, 529200, 529200, 340200, 113400, 7484400, 26195400, 47628000, 57153600, 47628000, 26195400, 7484400, 681080400, 2724321600, 5658206400, 7858620000, 7858620000, 5658206400, 2724321600, 681080400
Offset: 0
Examples
Triangle begins: 1; 1, 1; 6, 9, 6; 90, 180, 180, 90; 2520, 6300, 8100, 6300, 2520; 113400, 340200, 529200, 529200, 340200, 113400; 7484400, 26195400, 47628000, 57153600, 47628000, 26195400, 7484400; ... The T(2,0) = 6 configurations are: X X . . X . X . X . . X . X X . . X . X . . X X . . X X . X . X . X X . X . . X X . X . X X . . The T(2,1) = 9 configurations are: X X . X . X . X X . . X . X . X . . . . X . X . X . . . . X . X . X . . X X . X . X . X X . . X . X . X . . . . X . X . X . . . . X . X . X . . X X . X . X . X X
Programs
-
PARI
T(n,k)=binomial(2*n-k,k)*binomial(n+k,n-k)*(2*(n-k))!*(2*k)!/(2^n)
Formula
T(n,k) = binomial(2*n-k,k)*binomial(n+k,n-k)*(2*(n-k))!*(2*k)!/(2^n).
T(n,n-k) = T(n,k).
Comments