A382805 a(n) = Sum_{k=0..n} (-1)^(n-k) * (Stirling1(n,k) * k!)^2.
1, 1, 3, 4, -272, -8524, -96596, 9634752, 983055168, 36429411456, -4303305703296, -1051644384152064, -89651253435644160, 10632887072757561600, 5599203549778990667520, 914684633796830925275136, -89559567563652079025946624, -104514775371103880549281775616
Offset: 0
Keywords
Programs
-
Mathematica
Table[Sum[(-1)^(n - k) (StirlingS1[n, k] k!)^2, {k, 0, n}], {n, 0, 17}] Table[(n!)^2 SeriesCoefficient[1/(1 + Log[1 + x] Log[1 - y]), {x, 0, n}, {y, 0, n}], {n, 0, 17}]
Formula
a(n) = (n!)^2 * [(x*y)^n] 1 / (1 + log(1 + x) * log(1 - y)).