cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A382816 a(n) = number of occurrences of n in A008949.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 2

Views

Author

Clark Kimberling, Apr 07 2025

Keywords

Comments

Numbers that occur exactly 2 times: (4, 7, 8, 11, 15, 22, 26, 29, 31, 32, 37, 42, 46, 56, 57, 63, 67, 79, 92, 93, 99, 106,...)
Numbers that occur exactly 3 times: (16, 64, 232, 256, 466, 562, 1024, 1486, 2048,...)
The least number that occurs exactly 4 times is 4096.

Examples

			The numbers in A008949 (partial sums of Pascal's triangle) begin thus:
  1
  1    2
  1    3     4
  1    4     7     8
  1    5    11    15    16
  1    6    16    26    31    32
  1    7    22    42    57    63    64
one 2, one 3, two 4's, etc.
		

Crossrefs

Programs

  • Mathematica
    t = Flatten[Accumulate/@Table[Binomial[n, i], {n, 0, 200}, {i, 0, n}]]; (* A008949 *)
    Flatten[Table[Count[t, n], {n, 2, 200}]]
  • PARI
    row(n) = my(v=vector(n+1, k, binomial(n,k-1))); vector(#v, k, sum(i=1, k, v[i]));
    a(n) = sum (i=1, n+1, #select(x->(x==n), row(i))); \\ Michel Marcus, Apr 13 2025