A382817 a(n) = number of primes among the partial sums of row n of Pascal's triangle (A007318).
0, 1, 1, 1, 2, 1, 1, 2, 2, 0, 2, 1, 3, 2, 3, 2, 3, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 3, 3, 0, 2, 7, 2, 0, 0, 1, 1, 0, 0, 0, 2, 0, 1, 1, 1, 0, 1, 3, 1, 0, 1, 1, 1, 1, 1, 1, 5, 3, 3, 2, 3, 2, 3, 3, 10, 0, 1, 0, 1, 0, 2, 2, 2, 0, 0, 1, 1, 0, 2, 1, 1, 1, 2, 1, 2, 0
Offset: 0
Keywords
Examples
The numbers in A008949 (partial sums of Pascal's triangle) begin thus: 1 1 2 1 3 4 1 4 7 8 1 5 11 15 16 1 6 16 26 31 32 1 7 22 42 57 63 64 Row n=4 includes exactly 2 primes, so a(4) = 2.
Programs
-
Maple
a:= n-> nops(select(isprime, ListTools[PartialSums] ([seq(binomial(n, k), k=0..n)]))): seq(a(n), n=0..100); # Alois P. Heinz, Apr 07 2025
-
Mathematica
t = Accumulate /@ Table[Binomial[n, i], {n, 0, 100}, {i, 0, n}]; (* A037955 *) Map[PrimeQ, t]; Table[Count[m[[n]], True], {n, 1, 100}]
-
PARI
a(n) = my(v=vector(n+1, k, binomial(n,k-1))); #select(isprime, vector(#v, k, sum(i=1, k, v[i]))); \\ Michel Marcus, Apr 13 2025
Formula
a(n) = 0 <=> n in { A258483 }.