A382818 Square array A(n,k), n > 0, k > 0, read by downward antidiagonals: A(n,k) is the number of columns in all k-compositions of n.
1, 2, 3, 3, 11, 8, 4, 24, 52, 20, 5, 42, 163, 227, 48, 6, 65, 372, 1017, 944, 112, 7, 93, 710, 3019, 6030, 3800, 256, 8, 126, 1208, 7095, 23256, 34563, 14944, 576, 9, 164, 1897, 14340, 67251, 173076, 193392, 57748, 1280, 10, 207, 2808, 26082, 161394, 615630, 1256936, 1062756, 220128, 2816
Offset: 1
Examples
Square array begins: 1, 2, 3, 4, 5, 6, ... 3, 11, 24, 42, 65, 93, ... 8, 52, 163, 372, 710, 1208, ... 20, 227, 1017, 3019, 7095, 14340, ... 48, 944, 6030, 23256, 67251, 161394, ... ... A(2,2) = 11 counts the columns in the 2-compositions of 2: [2] [0] [1] [1,0] [0,1] [0,0] [1,1] [0], [2], [1], [0,1], [1,0], [1,1], [0,0].
Links
- John Tyler Rascoe, Antidiagonals n = 1..100, flattened
Crossrefs
Programs
Formula
Column k has g.f.: -((1 - x)^k - 1)*(1 - x)^k/(((1 - x)^k - 1) + (1 - x)^k)^2.
Comments