cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A382818 Square array A(n,k), n > 0, k > 0, read by downward antidiagonals: A(n,k) is the number of columns in all k-compositions of n.

Original entry on oeis.org

1, 2, 3, 3, 11, 8, 4, 24, 52, 20, 5, 42, 163, 227, 48, 6, 65, 372, 1017, 944, 112, 7, 93, 710, 3019, 6030, 3800, 256, 8, 126, 1208, 7095, 23256, 34563, 14944, 576, 9, 164, 1897, 14340, 67251, 173076, 193392, 57748, 1280, 10, 207, 2808, 26082, 161394, 615630, 1256936, 1062756, 220128, 2816
Offset: 1

Views

Author

John Tyler Rascoe, Apr 05 2025

Keywords

Comments

A k-composition of n is a rectangular array of nonnegative integers with k rows, at least one nonzero entry in each column, and having the sum of all entries equal to n.

Examples

			Square array begins:
   1,   2,    3,     4,     5,      6, ...
   3,  11,   24,    42,    65,     93, ...
   8,  52,  163,   372,   710,   1208, ...
  20, 227, 1017,  3019,  7095,  14340, ...
  48, 944, 6030, 23256, 67251, 161394, ...
  ...
A(2,2) = 11 counts the columns in the 2-compositions of 2:
 [2]   [0]   [1]   [1,0]   [0,1]   [0,0]   [1,1]
 [0],  [2],  [1],  [0,1],  [1,0],  [1,1],  [0,0].
		

Crossrefs

C.f. A001792 (column k=1), A005475 (row n=2), A145839, A181289, A181290 (column k=2), A382820 (main diagonal).

Programs

  • PARI
    A382818_Column(k,N) = {my(x='x+O('x^N)); Vec(-(((1 - x)^k - 1)*(1 - x)^k)/( ((1 - x)^k - 1) + (1 - x)^k)^2)}
    A382818_array(max_row) = {my(m=matrix(0)); for(n=1,max_row, m=matconcat([m,A382818_Column(n,max_row)~])); m}
    A382818_array(10)

Formula

Column k has g.f.: -((1 - x)^k - 1)*(1 - x)^k/(((1 - x)^k - 1) + (1 - x)^k)^2.

A382924 Number of m-compositions of n with n zeros.

Original entry on oeis.org

1, 2, 13, 70, 336, 2076, 11091, 65210, 365661, 2159354, 11713047, 71427504, 392916687, 2245186352, 13527678851, 73679458270, 429472428457, 2553994191220, 14264421153074, 80483620074092, 489077890675807, 2768919905996888, 15394229582049408, 91794448088043258
Offset: 0

Views

Author

John Tyler Rascoe, Apr 09 2025

Keywords

Comments

For some m > 0, an m-composition of n is a rectangular array of nonnegative integers with m rows, at least one nonzero entry in each column, and having the sum of all entries equal to n.

Examples

			a(2) = 13 counts:
  [2]  [0]  [0]  [1]  [1]  [1]  [0]  [0]  [0]  [1][1]  [1][0]  [0][0]  [0][1]
  [0]  [2]  [0]  [1]  [0]  [0]  [1]  [1]  [0]  [0][0], [0][1], [1][1], [1][0].
  [0], [0], [2], [0]  [1]  [0]  [1]  [0]  [1]
                 [0], [0], [1], [0], [1], [1],
		

Crossrefs

Cf. A038207, A101509, A181331, A261780, A323429, A382820, (main diagonal of A382923).

Programs

  • PARI
    G_tx(max_row) = {my(row = max_row, N = row*2, m = List([concat([1],vector(row-1,i,0))]), x='x+O('x^N), h=1 + sum(m=1,N,-1+ 1/(1 + t^m - (t + x/(1-x))^m))); for(n=1,row, listput(m,Vecrev(polcoeff(h, n))[1..row])); matrix(row, row, i,j, m[i][j])}
    A382924(max_n) ={my(A=G_tx(max_n)); vector(max_n,i,A[i,i])}
    A382924(20)

Formula

a(n) = [(x*t)^n] 1 + Sum_{m>0} -1 + 1/(1 + t^m - (t + x/(1 - x))^m).
Showing 1-2 of 2 results.