A382818
Square array A(n,k), n > 0, k > 0, read by downward antidiagonals: A(n,k) is the number of columns in all k-compositions of n.
Original entry on oeis.org
1, 2, 3, 3, 11, 8, 4, 24, 52, 20, 5, 42, 163, 227, 48, 6, 65, 372, 1017, 944, 112, 7, 93, 710, 3019, 6030, 3800, 256, 8, 126, 1208, 7095, 23256, 34563, 14944, 576, 9, 164, 1897, 14340, 67251, 173076, 193392, 57748, 1280, 10, 207, 2808, 26082, 161394, 615630, 1256936, 1062756, 220128, 2816
Offset: 1
Square array begins:
1, 2, 3, 4, 5, 6, ...
3, 11, 24, 42, 65, 93, ...
8, 52, 163, 372, 710, 1208, ...
20, 227, 1017, 3019, 7095, 14340, ...
48, 944, 6030, 23256, 67251, 161394, ...
...
A(2,2) = 11 counts the columns in the 2-compositions of 2:
[2] [0] [1] [1,0] [0,1] [0,0] [1,1]
[0], [2], [1], [0,1], [1,0], [1,1], [0,0].
-
A382818_Column(k,N) = {my(x='x+O('x^N)); Vec(-(((1 - x)^k - 1)*(1 - x)^k)/( ((1 - x)^k - 1) + (1 - x)^k)^2)}
A382818_array(max_row) = {my(m=matrix(0)); for(n=1,max_row, m=matconcat([m,A382818_Column(n,max_row)~])); m}
A382818_array(10)
A382924
Number of m-compositions of n with n zeros.
Original entry on oeis.org
1, 2, 13, 70, 336, 2076, 11091, 65210, 365661, 2159354, 11713047, 71427504, 392916687, 2245186352, 13527678851, 73679458270, 429472428457, 2553994191220, 14264421153074, 80483620074092, 489077890675807, 2768919905996888, 15394229582049408, 91794448088043258
Offset: 0
a(2) = 13 counts:
[2] [0] [0] [1] [1] [1] [0] [0] [0] [1][1] [1][0] [0][0] [0][1]
[0] [2] [0] [1] [0] [0] [1] [1] [0] [0][0], [0][1], [1][1], [1][0].
[0], [0], [2], [0] [1] [0] [1] [0] [1]
[0], [0], [1], [0], [1], [1],
-
G_tx(max_row) = {my(row = max_row, N = row*2, m = List([concat([1],vector(row-1,i,0))]), x='x+O('x^N), h=1 + sum(m=1,N,-1+ 1/(1 + t^m - (t + x/(1-x))^m))); for(n=1,row, listput(m,Vecrev(polcoeff(h, n))[1..row])); matrix(row, row, i,j, m[i][j])}
A382924(max_n) ={my(A=G_tx(max_n)); vector(max_n,i,A[i,i])}
A382924(20)
Showing 1-2 of 2 results.
Comments