A382832 Least k such that there exist two distinct subsets of {0, ..., k-1} with the same sum of m-th powers for 0 <= m <= n.
2, 4, 7, 12, 16, 23, 31
Offset: 0
Examples
n | a(n) | subsets with the same sums of powers --+------+------------------------------------- 0 | 2 | {0}, {1} 1 | 4 | {0,3}, {1,2} 2 | 7 | {0,4,5}, {1,2,6} 3 | 12 | {0,4,7,11}, {1,2,9,10} 4 | 16 | {0,5,6,7,13,14}, {1,2,8,9,10,15} 5 | 23 | {0,5,6,16,17,22}, {1,2,10,12,20,21} 6 | 31 | {0,5,6,9,16,17,18,22,28,29}, {1,2,8,12,13,14,21,24,25,30} For n = 3, the two subsets {0,4,7,11} and {1,2,9,10} of {0, ..., 11} have the same sum of m-th powers for 0 <= m <= 3: 0^0+4^0+7^0+11^0 = 1^0+2^0+9^0+10^0 = 4, 0^1+4^1+7^1+11^1 = 1^1+2^1+9^1+10^1 = 22, 0^2+4^2+7^2+11^2 = 1^2+2^2+9^2+10^2 = 186, 0^3+4^3+7^3+11^3 = 1^3+2^3+9^3+10^3 = 1738. There are no such subsets of {0, ..., 10}, so a(3) = 12.
Comments