cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A382843 Length of the long leg in the unique primitive Pythagorean triple (x,y,z) such that (x-y+z)/2 = A000045(n) and its long leg and hypotenuse are consecutive natural numbers.

Original entry on oeis.org

0, 0, 0, 4, 12, 40, 112, 312, 840, 2244, 5940, 15664, 41184, 108112, 283504, 742980, 1946364, 5097624, 13348944, 34953160, 91516920, 239607940, 627323620, 1642389984, 4299890112, 11257351200, 29472278112, 77159668612, 202007027820, 528861900424, 1384579459120
Offset: 0

Views

Author

Keywords

Examples

			Triples begin:
  n=0:     -1,     0,     1;
  n=1:      1,     0,     1;
  n=2:      1,     0,     1;
  n=3:      3,     4,     5.
This sequence gives column 2.
		

Crossrefs

Cf. A000045, A382844 (area), A382845 (sum of the legs), A095122 (semiperimeter), A001595 (short leg).

Formula

a(n) = 2*A000045(n)*(A000045(n) - 1),.

A382845 Sum of the legs of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = A000045(n) and its long leg and hypotenuse are consecutive natural numbers.

Original entry on oeis.org

-1, 1, 1, 7, 17, 49, 127, 337, 881, 2311, 6049, 15841, 41471, 108577, 284257, 744199, 1948337, 5100817, 13354111, 34961521, 91530449, 239629831, 627359041, 1642447297, 4299982847, 11257501249, 29472520897, 77160061447, 202007663441, 528862928881, 1384581123199
Offset: 0

Views

Author

Keywords

Examples

			For n=4, the short leg is A382843(2,1) = 3 and the long leg is A382843(2,2) = 4  so the sum of the legs is then a(4) = 3 + 4 = 7.
		

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.

Crossrefs

Programs

  • Mathematica
    a=Table[Fibonacci[n],{n,0,30}];Apply[Join,Map[{2#^2-1}&,a]]

Formula

a(n) = A382843(n,1) + A382843(n,2).
a(n) = 2*Fibonacci(n)^2 - 1.

A095122 a(n) = Fibonacci(n)*(2*Fibonacci(n)-1).

Original entry on oeis.org

0, 1, 1, 6, 15, 45, 120, 325, 861, 2278, 5995, 15753, 41328, 108345, 283881, 743590, 1947351, 5099221, 13351528, 34957341, 91523685, 239618886, 627341331, 1642418641, 4299936480, 11257426225, 29472399505, 77159865030, 202007345631, 528862414653, 1384580291160
Offset: 0

Views

Author

Paul Barry, May 29 2004

Keywords

Comments

a(n) mod 2 = Fibonacci(n) mod 2 = A011655(n).
The unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = A000045(n) and its long leg and hypotenuse are consecutive natural numbers is (2*A000045(n)-1, 2*A000045(n)*(A000045(n)-1), 2*A000045(n)*(A000045(n)-1)+1) and its semiperimeter is a(n). - Miguel-Ángel Pérez García-Ortega, Apr 13 2025

References

  • Miguel Ángel Pérez García-Ortega, José Manuel Sánchez Muñoz and José Miguel Blanco Casado, El Libro de las Ternas Pitagóricas, Preprint 2025.

Crossrefs

Programs

  • Mathematica
    #(2#-1)&/@Fibonacci[Range[0,30]] (* or *) LinearRecurrence[{3,1,-5,-1,1},{0,1,1,6,15},30] (* Harvey P. Dale, Jan 14 2012 *)

Formula

G.f.: x*(1-2*x+2*x^2+x^3)/((1+x)*(1-x-x^2)*(1-3*x+x^2)).
a(n) = 2*(Fibonacci(2n-1)+Fibonacci(2n+1))/5-Fibonacci(n)+4*(-1)^n/5.
a(n) = 2*Lucas(2n)/5-Fibonacci(n)+4*(-1)^n/5.
a(n) = 2*A000032(2n)/5-A000045(n)+4*(-1)^n/5.
a(n) = 3*a(n-1)+a(n-2)-5*a(n-3)-a(n-4)+a(n-5), with a(0)=0, a(1)=1, a(2)=1, a(3)=6, a(4)=15. - Harvey P. Dale, Jan 14 2012

A385187 Area of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = A002378(n) and its long leg and hypotenuse are consecutive natural numbers.

Original entry on oeis.org

1, 6, 330, 3036, 14820, 51330, 142926, 341880, 731016, 1433790, 2625810, 4547796, 7519980, 11957946, 18389910, 27475440, 40025616, 57024630, 79652826, 109311180, 147647220, 196582386, 258340830, 335479656, 430920600, 547983150, 690419106, 862448580, 1068797436, 1314736170, 1606120230
Offset: 1

Views

Author

Keywords

Comments

a(n) is a multiple of 6 for all n.

Examples

			For n=2, the short leg is A385022(2,1) = 11 and the long leg is A385022(2,2) = 60  so the area is then a(2) = (11 * 60)/2 = 330.
		

Crossrefs

Programs

  • Mathematica
    a=Table[n(n+1),{n,1,30}];Apply[Join,Map[{#(#-1)(2#-1)}&,a]]

Formula

a(n) = (A385022(n,1) * A385022(n,2))/2.
a(n) = A002378(n)*(A002378(n) - 1)*(2*A002378(n) - 1).
Showing 1-4 of 4 results.