cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A382851 a(n) = least number in row n of Pascal's triangle that exceeds every number in row n-1.

Original entry on oeis.org

2, 3, 4, 10, 15, 21, 56, 84, 210, 330, 495, 1287, 2002, 5005, 8008, 19448, 31824, 50388, 125970, 203490, 497420, 817190, 1961256, 3268760, 5311735, 13037895, 21474180, 51895935, 86493225, 206253075, 347373600, 818809200, 1391975640, 3247943160, 5567902560
Offset: 2

Views

Author

Clark Kimberling, Apr 13 2025

Keywords

Examples

			Rows 0 to 5 of Pascal's triangle:
  1
  1  1
  1  2   1
  1  3   3   1
  1  4   6   4  1
  1  5  10  10  5  1,
10 is the least number in row 5 that exceeds max{1,4,6}, so a(5)=10
		

Crossrefs

Programs

  • Mathematica
    z = 40; c[n_, k_] := Binomial[n, k];
    t[n_] := Table[c[n, k], {k, 0, n}];
    a[n_] := Select[Range[z], c[n, #] > c[n - 1, Floor[(n - 1)/2]] &, 1];
    Flatten[Table[a[n], {n, 1, 3 z}]]  (* A382850 *)
    Flatten[Table[c[n, a[n]], {n, 1, z}]]  (* A382851 *)
    a[n_] := Block[{b, k = 1, m = Binomial[n -1, Floor[(n -1)/2]]}, While[b = Binomial[n, k]; b < m, k++]; b]; Array[a, 35, 2] (* Robert G. Wilson v, May 02 2025 *)
  • PARI
    row(n) = vector(n+1, k, binomial(n,k-1));
    a(n) = my(val = vecmax(row(n-1)), w = row(n)); for (i=1, #w, if (w[i] > val, return(w[i]));); \\ Michel Marcus, Apr 13 2025
Showing 1-1 of 1 results.