A382923 Square array A(n,k), n >= 0, k >= 0, read by downward antidiagonals: A(n,k) is the number of m-compositions of n with k zeros.
1, 0, 1, 0, 2, 3, 0, 3, 5, 7, 0, 4, 13, 16, 16, 0, 5, 14, 33, 40, 35, 0, 6, 29, 70, 105, 100, 75, 0, 7, 27, 88, 207, 292, 244, 159, 0, 8, 51, 152, 336, 604, 758, 576, 334, 0, 9, 44, 206, 588, 1161, 1749, 1920, 1329, 696, 0, 10, 79, 300, 882, 2076, 3685, 4924, 4802, 3028, 1442
Offset: 0
Examples
Square array begins: 1, 0, 0, 0, 0, 0, ... 1, 2, 3, 4, 5, 6, ... 3, 5, 13, 14, 29, 27, ... 7, 16, 33, 70, 88, 152, ... 16, 40, 105, 207, 336, 588, ... 35, 100, 292, 604, 1161, 2076, ... ... A(2,0) = 3 counts: [2], [1,1], [1] [1]. A(2,1) = 5 counts: [2] [0] [1] [1] [0] [0], [2], [1] [0] [1] [0], [1], [1].
Links
- John Tyler Rascoe, Antidiagonals n = 0..30, flattened
Programs
-
PARI
G_tx(max_row) = {my(row = max_row, N = row*2, m = List([concat([1],vector(row-1,i,0))]), x='x+O('x^N), h=1 + sum(m=1,N,-1+ 1/(1 + t^m - (t + x/(1-x))^m))); for(n=1,row, listput(m,Vecrev(polcoeff(h, n))[1..row])); matrix(row, row, i,j, m[i][j])} G_tx(10)
Formula
G.f.: G(t,x) = 1 + Sum_{m>0} -1 + 1/(1 + t^m - (t + x/(1 - x))^m).
Comments