A382929 Smallest number k such that k + n + sigma(n) is a perfect number.
4, 1, 21, 17, 17, 10, 13, 5, 6, 0, 5, 456, 1, 458, 457, 449, 461, 439, 457, 434, 443, 438, 449, 412, 440, 428, 429, 412, 437, 394, 433, 401, 415, 408, 413, 369, 421, 398, 401, 366, 413, 358, 409, 368, 373, 378, 401, 324, 390, 353, 373, 346, 389, 322, 369, 320, 359, 348, 377, 268
Offset: 1
Keywords
Examples
a(10) = 0, because 10 + sigma(10) = 28, which is perfect. a(12) = 456, because 456 + 12 + sigma(12) = 496, which is perfect. As 496 is the smallest perfect number at least as large as sigma(60) + 60 = 168 + 60 = 228 we have a(60) = 496 - 228 = 268. - _David A. Corneth_, Apr 10 2025
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 2500 terms from Michel Marcus)
Programs
-
Mathematica
Do[k=0;s=DivisorSigma[1,n];While[DivisorSigma[1,s+n+k]!=2*(s+n+k),k++];a[n]=k,{n,60}];Array[a,60] (* James C. McMahon, Apr 10 2025 *)
-
PARI
a(n) = my(k=0); while (sigma(k+n+sigma(n)) != 2*(k+n+sigma(n)), k++); k; \\ Michel Marcus, Apr 09 2025
-
PARI
a(n) = {my(s = sigma(n) + n); forprime(p = 2, oo, my(c = 2^p-1); if(isprime(c) && binomial(c+1, 2) >= s, return(binomial(c+1, 2) - s))) } \\ David A. Corneth, Apr 10 2025
-
PARI
a(n) = my(v = [6, 28, 496, 8128, 33550336, 8589869056], x=n+sigma(n), k=0); for (i=1, #v-1, if ((x > v[i]) && (x <= v[i+1]), k = i; break)); v[k+1] - x; \\ Michel Marcus, Apr 11 2025