A382983 a(n) is the number of solutions to n = x*y in positive integers x <= y where x + y is prime.
1, 1, 0, 1, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 4, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 1, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 0, 0, 1, 0, 4, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2
Offset: 1
Examples
The a(12) = 2 solutions are (1, 12) and (3, 4) because 1*12 = 12 and 1 + 12 = 13 is prime and 3*4 = 12 and 3 + 4 = 7 is prime.
Links
- Felix Huber, Table of n, a(n) for n = 1..10000
Programs
-
Maple
A382983:=proc(n) local a,i,L; if n=1 then return 1 fi; a:=0; L:=NumberTheory:-Divisors(n); for i to nops(L)/2 do if isprime(L[i]+L[nops(L)-i+1]) then a:=a+1 fi od; return a end proc; seq(A382983(n),n=1..88);
-
PARI
a(n) = sumdiv(n, d, (d<=n/d) && isprime(d+n/d)); \\ Michel Marcus, Apr 14 2025
Formula
a(n) <= A038548(n).
a(2*k+1) = 0 for positive integers k.
Comments