A383013 Number of integer partitions of n having a permutation with all equal run-lengths.
1, 1, 2, 3, 5, 6, 9, 11, 18, 21, 31, 38, 56, 67, 94, 121, 162, 199, 265, 330, 438, 543, 693, 859, 1103, 1353, 1702, 2097, 2619, 3194, 3972, 4821, 5943, 7206, 8796, 10632, 12938, 15536, 18794, 22539, 27133, 32374, 38827, 46175, 55134, 65421, 77751, 91951, 109011, 128482
Offset: 0
Keywords
Examples
The partition (2,2,1,1,1,1) has permutation (1,1,2,2,1,1) with equal run-lengths (2,2,2) so is counted under a(8). The a(1) = 1 through a(8) = 18 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (21) (22) (32) (33) (43) (44) (111) (31) (41) (42) (52) (53) (211) (221) (51) (61) (62) (1111) (311) (222) (322) (71) (11111) (321) (331) (332) (411) (421) (422) (2211) (511) (431) (111111) (3211) (521) (22111) (611) (1111111) (2222) (3221) (3311) (4211) (22211) (32111) (221111) (11111111)
Links
- David A. Corneth, Table of n, a(n) for n = 0..82
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n],Select[Permutations[#], SameQ@@Length/@Split[#]&]!={}&]],{n,0,15}]
Extensions
More terms from Bert Dobbelaere, Apr 26 2025
Comments