cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383013 Number of integer partitions of n having a permutation with all equal run-lengths.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 11, 18, 21, 31, 38, 56, 67, 94, 121, 162, 199, 265, 330, 438, 543, 693, 859, 1103, 1353, 1702, 2097, 2619, 3194, 3972, 4821, 5943, 7206, 8796, 10632, 12938, 15536, 18794, 22539, 27133, 32374, 38827, 46175, 55134, 65421, 77751, 91951, 109011, 128482
Offset: 0

Views

Author

Gus Wiseman, Apr 12 2025

Keywords

Comments

A partition of n counts towards a(n) if and only if #p + g >= 2*L where #p is the number of parts counted with multiplicity of the partition, g is the gcd of all the frequencies of every distinct part and L is the largest frequency of a part. - David A. Corneth, Apr 27 2025

Examples

			The partition (2,2,1,1,1,1) has permutation (1,1,2,2,1,1) with equal run-lengths (2,2,2) so is counted under a(8).
The a(1) = 1 through a(8) = 18 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (211)   (221)    (51)      (61)       (62)
                    (1111)  (311)    (222)     (322)      (71)
                            (11111)  (321)     (331)      (332)
                                     (411)     (421)      (422)
                                     (2211)    (511)      (431)
                                     (111111)  (3211)     (521)
                                               (22111)    (611)
                                               (1111111)  (2222)
                                                          (3221)
                                                          (3311)
                                                          (4211)
                                                          (22211)
                                                          (32111)
                                                          (221111)
                                                          (11111111)
		

Crossrefs

For distinct instead of equal run-lengths we have A239455, ranked by A351294.
The complement for distinct run-lengths is A351293, ranked by A351295.
The complement is counted by A382915, ranked by A382879, by signature A382914.
A000041 counts integer partitions, strict A000009.
A304442 counts partitions with equal run-sums, ranks A353833.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596.
A382857 counts permutations of prime indices with equal run-lengths, firsts A382878.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#], SameQ@@Length/@Split[#]&]!={}&]],{n,0,15}]

Extensions

More terms from Bert Dobbelaere, Apr 26 2025