cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A384175 Number of subsets of {1..n} with all distinct lengths of maximal runs (increasing by 1).

Original entry on oeis.org

1, 2, 4, 7, 13, 24, 44, 77, 135, 236, 412, 713, 1215, 2048, 3434, 5739, 9559, 15850, 26086, 42605, 69133, 111634, 179602, 288069, 460553, 733370, 1162356, 1833371, 2878621, 4501856, 7016844, 10905449, 16904399, 26132460, 40279108, 61885621, 94766071, 144637928
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2025

Keywords

Examples

			The subset {2,3,5,6,7,9} has maximal runs ((2,3),(5,6,7),(9)), with lengths (2,3,1), so is counted under a(9).
The a(0) = 1 through a(4) = 13 subsets:
  {}  {}   {}     {}       {}
      {1}  {1}    {1}      {1}
           {2}    {2}      {2}
           {1,2}  {3}      {3}
                  {1,2}    {4}
                  {2,3}    {1,2}
                  {1,2,3}  {2,3}
                           {3,4}
                           {1,2,3}
                           {1,2,4}
                           {1,3,4}
                           {2,3,4}
                           {1,2,3,4}
		

Crossrefs

For equal instead of distinct lengths we have A243815.
These subsets are ranked by A328592.
The complement is counted by A384176.
For anti-runs instead of runs we have A384177, ranks A384879.
For partitions instead of subsets we have A384884, A384178, A384886, A384880.
For permutations instead of subsets we have A384891, equal instead of distinct A384892.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],UnsameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}]
  • PARI
    lista(n)={my(o=(1-x^(n+1))/(1-x)*O(y^(n+2)),p=prod(i=1,n,1+o+x*y^(i+1)/(1-y),1/(1-y)));p=subst(serlaplace(p),x,1);Vec(p-1)} \\ Christian Sievers, Jun 18 2025

Extensions

a(21) and beyond from Christian Sievers, Jun 18 2025

A383708 Number of integer partitions of n such that it is possible to choose a family of pairwise disjoint strict integer partitions, one of each part.

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 5, 7, 8, 13, 14, 18, 22, 27, 36, 41, 50, 61, 73, 86
Offset: 0

Views

Author

Gus Wiseman, May 07 2025

Keywords

Comments

Also the number of integer partitions y of n whose normal multiset (in which i appears y_i times) is a Look-and-Say partition.

Examples

			For y = (3,3) we can choose disjoint strict partitions ((2,1),(3)), so (3,3) is counted under a(6).
The a(1) = 1 through a(9) = 8 partitions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)      (8)      (9)
            (2,1)  (3,1)  (3,2)  (3,3)    (4,3)    (4,4)    (5,4)
                          (4,1)  (4,2)    (5,2)    (5,3)    (6,3)
                                 (5,1)    (6,1)    (6,2)    (7,2)
                                 (3,2,1)  (4,2,1)  (7,1)    (8,1)
                                                   (4,3,1)  (4,3,2)
                                                   (5,2,1)  (5,3,1)
                                                            (6,2,1)
		

Crossrefs

These partitions have Heinz numbers A382913.
Without ones we have A383533, complement A383711.
The number of such families for each Heinz number is A383706.
The complement is counted by A383710, ranks A382912.
A048767 is the Look-and-Say transform, fixed points A048768 (counted by A217605).
A098859 counts partitions with distinct multiplicities, compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y], UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n], pof[#]!={}&]],{n,15}]

A383710 Number of integer partitions of n such that it is not possible to choose a family of pairwise disjoint strict integer partitions, one of each part.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 6, 10, 15, 22, 29, 42, 59, 79, 108, 140, 190, 247, 324, 417, 541
Offset: 0

Views

Author

Gus Wiseman, May 07 2025

Keywords

Comments

Also the number of integer partitions of n whose normal multiset (in which i appears y_i times) is not a Look-and-Say partition.

Examples

			For y = (3,3) we can choose disjoint strict partitions ((2,1),(3)), so (3,3) is not counted under a(6).
The a(2) = 1 through a(8) = 15 partitions:
  (11)  (111)  (22)    (221)    (222)     (322)      (332)
               (211)   (311)    (411)     (331)      (422)
               (1111)  (2111)   (2211)    (511)      (611)
                       (11111)  (3111)    (2221)     (2222)
                                (21111)   (3211)     (3221)
                                (111111)  (4111)     (3311)
                                          (22111)    (4211)
                                          (31111)    (5111)
                                          (211111)   (22211)
                                          (1111111)  (32111)
                                                     (41111)
                                                     (221111)
                                                     (311111)
                                                     (2111111)
                                                     (11111111)
		

Crossrefs

These partitions have Heinz numbers A382912.
The number of such families for each Heinz number is A383706.
The complement is counted by A383708, ranks A382913.
Without ones we have A383711, complement A383533.
A048767 is the Look-and-Say transform, fixed points A048768 (counted by A217605).
A098859 counts partitions with distinct multiplicities, compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y], UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n], pof[#]=={}&]], {n,0,15}]

A382879 Positions of 0 in A382857 (permutations of prime indices with equal run-lengths).

Original entry on oeis.org

24, 40, 48, 54, 56, 80, 88, 96, 104, 112, 135, 136, 152, 160, 162, 176, 184, 189, 192, 208, 224, 232, 240, 248, 250, 272, 288, 296, 297, 304, 320, 328, 336, 344, 351, 352, 368, 375, 376, 384, 405, 416, 424, 448, 459, 464, 472, 480, 486, 488, 496, 513, 528, 536
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms together with their prime indices begin:
   24: {1,1,1,2}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
   54: {1,2,2,2}
   56: {1,1,1,4}
   80: {1,1,1,1,3}
   88: {1,1,1,5}
   96: {1,1,1,1,1,2}
  104: {1,1,1,6}
  112: {1,1,1,1,4}
  135: {2,2,2,3}
  136: {1,1,1,7}
  152: {1,1,1,8}
  160: {1,1,1,1,1,3}
		

Crossrefs

For distinct instead of equal the complement is A351294, counted by A239455.
For distinct instead of equal we have A351295, counted by A351293.
For run-sums instead of run-lengths we have A383100, zeros of A382877, distinct A382876.
Positions of 0 in A382857 (firsts A382878), by signature A382858 (distinct A382773).
For prime signature instead of prime indices we have A382914.
Partitions of this type are counted by A382915.
The complement is counted by A383013.
A005811 counts runs in binary expansion.
A056239 adds up prime indices, row sums of A112798.
A297770 counts distinct runs in binary expansion.
A164707 lists numbers whose binary form has equal runs of ones, distinct A328592.
A304442 counts partitions with equal run-sums, ranks A353833.
A329739 counts compositions with distinct run-lengths, ranks A351290.
A353744 ranks compositions with equal run-lengths, distinct A351596 (complement A351291).

Programs

  • Mathematica
    Select[Range[100], Select[Permutations[Join@@ConstantArray@@@FactorInteger[#]], SameQ@@Length/@Split[#]&]=={}&]

A384176 Number of subsets of {1..n} without all distinct lengths of maximal runs (increasing by 1).

Original entry on oeis.org

0, 0, 0, 1, 3, 8, 20, 51, 121, 276, 612, 1335, 2881, 6144, 12950, 27029, 55977, 115222, 236058, 481683, 979443
Offset: 0

Views

Author

Gus Wiseman, Jun 16 2025

Keywords

Examples

			The subset {1,3,4,8,9} has maximal runs ((1),(3,4),(8,9)), with lengths (1,2,2), so is counted under a(10).
The a(0) = 0 through a(6) = 20 subsets:
  .  .  .  {1,3}  {1,3}  {1,3}      {1,3}
                  {1,4}  {1,4}      {1,4}
                  {2,4}  {1,5}      {1,5}
                         {2,4}      {1,6}
                         {2,5}      {2,4}
                         {3,5}      {2,5}
                         {1,3,5}    {2,6}
                         {1,2,4,5}  {3,5}
                                    {3,6}
                                    {4,6}
                                    {1,3,5}
                                    {1,3,6}
                                    {1,4,6}
                                    {2,4,6}
                                    {1,2,4,5}
                                    {1,2,4,6}
                                    {1,2,5,6}
                                    {1,3,4,6}
                                    {1,3,5,6}
                                    {2,3,5,6}
		

Crossrefs

For equal instead of distinct lengths the complement is A243815.
These subsets are ranked by the non-members of A328592.
The complement is counted by A384175.
For strict partitions instead of subsets see A384178, A384884, A384886, A384880.
For permutations instead of subsets see A384891, A384892, A010027.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],!UnsameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}]

A384886 Number of strict integer partitions of n with all equal lengths of maximal runs (decreasing by 1).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 4, 7, 7, 8, 11, 11, 14, 17, 19, 20, 27, 27, 35, 38, 45, 47, 60, 63, 75, 84, 97, 104, 127, 134, 155, 175, 196, 218, 251, 272, 307, 346, 384, 424, 480, 526, 586, 658, 719, 798, 890, 979, 1078, 1201, 1315, 1451, 1603, 1762, 1934, 2137
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2025

Keywords

Examples

			The strict partition y = (7,6,5,3,2,1) has maximal runs ((7,6,5),(3,2,1)), with lengths (3,3), so y is counted under a(24).
The a(1) = 1 through a(14) = 14 partitions (A-E = 10-14):
  1  2  3   4   5   6    7   8   9    A     B    C     D    E
        21  31  32  42   43  53  54   64    65   75    76   86
                41  51   52  62  63   73    74   84    85   95
                    321  61  71  72   82    83   93    94   A4
                                 81   91    92   A2    A3   B3
                                 432  631   A1   B1    B2   C2
                                 531  4321  641  543   C1   D1
                                            731  642   742  752
                                                 741   751  842
                                                 831   841  851
                                                 5421  931  941
                                                            A31
                                                            5432
                                                            6521
		

Crossrefs

For subsets instead of strict partitions we have A243815, distinct lengths A384175.
For distinct instead of equal lengths we have A384178, for anti-runs A384880.
This is the strict case of A384904, distinct lengths A384884.
A000041 counts integer partitions, strict A000009.
A047993 counts partitions with max part = length (A106529).
A098859 counts Wilf partitions (complement A336866), compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&SameQ@@Length/@Split[#,#2==#1-1&]&]],{n,0,15}]
  • PARI
    A_q(N) = {Vec(1+sum(k=1,floor(-1/2+sqrt(2+2*N)), sum(i=1,(N/(k*(k+1)/2))+1, q^(k*(k+1)*i^2/2)/prod(j=1,i, 1 - q^(j*k)))) + O('q^(N+1)))} \\ John Tyler Rascoe, Aug 21 2025

Formula

G.f.: 1 + Sum_{i,k>0} q^(k*(k+1)*i^2/2)/Product_{j=1..i} (1 - q^(j*k)). - John Tyler Rascoe, Aug 21 2025

A383533 Number of integer partitions of n with no ones such that it is possible to choose a family of pairwise disjoint strict integer partitions, one of each part.

Original entry on oeis.org

1, 0, 1, 1, 1, 2, 3, 3, 4, 5, 8, 8, 11, 13, 17, 22, 25, 30, 37, 44, 53, 69, 77, 93, 111, 130, 153, 181, 220, 249, 295
Offset: 0

Views

Author

Gus Wiseman, May 07 2025

Keywords

Comments

The Heinz numbers of these partitions are the odd terms of A382913.
Also the number of integer partitions y of n with no ones such that the normal multiset (in which i appears y_i times) is a Look-and-Say partition.

Examples

			For y = (3,3) we can choose disjoint strict partitions ((2,1),(3)), so (3,3) is counted under a(6).
The a(2) = 1 through a(10) = 8 partitions:
  (2)  (3)  (4)  (5)    (6)    (7)    (8)    (9)      (10)
                 (3,2)  (3,3)  (4,3)  (4,4)  (5,4)    (5,5)
                        (4,2)  (5,2)  (5,3)  (6,3)    (6,4)
                                      (6,2)  (7,2)    (7,3)
                                             (4,3,2)  (8,2)
                                                      (4,3,3)
                                                      (4,4,2)
                                                      (5,3,2)
		

Crossrefs

The number of such families is A383706.
Allowing ones gives A383708 (ranks A382913), complement A383710 (ranks A382912).
The complement is counted by A383711.
A048767 is the Look-and-Say transform, fixed points A048768 (counted by A217605).
A098859 counts partitions with distinct multiplicities, compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y], UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n], FreeQ[#,1]&&!pof[#]=={}&]],{n,0,15}]

A243815 Number of length n words on alphabet {0,1} such that the length of every maximal block of 0's (runs) is the same.

Original entry on oeis.org

1, 2, 4, 8, 14, 24, 39, 62, 97, 151, 233, 360, 557, 864, 1344, 2099, 3290, 5176, 8169, 12931, 20524, 32654, 52060, 83149, 133012, 213069, 341718, 548614, 881572, 1417722, 2281517, 3673830, 5918958, 9540577, 15384490, 24817031, 40045768, 64637963, 104358789
Offset: 0

Views

Author

Geoffrey Critzer, Jun 11 2014

Keywords

Comments

Number of terms of A164710 with exactly n+1 binary digits. - Robert Israel, Nov 09 2015
From Gus Wiseman, Jun 23 2025: (Start)
This is the number of subsets of {1..n} with all equal lengths of runs of consecutive elements increasing by 1. For example, the runs of S = {1,2,5,6,8,9} are ((1,2),(5,6),(8,9)), with lengths (2,2,2), so S is counted under a(9). The a(0) = 1 through a(4) = 14 subsets are:
{} {} {} {} {}
{1} {1} {1} {1}
{2} {2} {2}
{1,2} {3} {3}
{1,2} {4}
{1,3} {1,2}
{2,3} {1,3}
{1,2,3} {1,4}
{2,3}
{2,4}
{3,4}
{1,2,3}
{2,3,4}
{1,2,3,4}
(End)

Examples

			0110 is a "good" word because the length of both its runs of 0's is 1.
Words of the form 11...1 are good words because the condition is vacuously satisfied.
a(5) = 24 because there are 32 length 5 binary words but we do not count: 00010, 00101, 00110, 01000, 01001, 01100, 10010, 10100.
		

Crossrefs

Cf. A164710.
These subsets are ranked by A164707, complement A164708.
For distinct instead of equal lengths we have A384175, complement A384176.
For anti-runs instead of runs we have A384889, for partitions A384888.
For permutations instead of subsets we have A384892, distinct instead of equal A384891.
For partitions instead of subsets we have A384904, strict A384886.
The complement is counted by A385214.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A049988 counts partitions with equal run-lengths, distinct A325325.
A329738 counts compositions with equal run-lengths, distinct A329739.
A384887 counts partitions with equal lengths of gapless runs, distinct A384884.

Programs

  • Maple
    a:= n-> 1 + add(add((d-> binomial(d+j, d))(n-(i*j-1))
              , j=1..iquo(n+1, i)), i=2..n+1):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jun 11 2014
  • Mathematica
    nn=30;Prepend[Map[Total,Transpose[Table[Drop[CoefficientList[Series[ (1+x^k)/(1-x-x^(k+1))-1/(1-x),{x,0,nn}],x],1],{k,1,nn}]]],0]+1
    Table[Length[Select[Subsets[Range[n]],SameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}] (* Gus Wiseman, Jun 23 2025 *)

A383100 Numbers whose prime indices have no permutation with all equal run-sums.

Original entry on oeis.org

6, 10, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 38, 39, 42, 44, 45, 46, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105, 106, 108
Offset: 1

Views

Author

Gus Wiseman, Apr 20 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The prime indices of 18 are {1,2,2}, with permutations (1,2,2), (2,1,2), (2,2,1), with run sums (1,4), (2,1,2), (4,1) respectively, so 18 is in the sequence.
The terms together with their prime indices begin:
    6: {1,2}
   10: {1,3}
   14: {1,4}
   15: {2,3}
   18: {1,2,2}
   20: {1,1,3}
   21: {2,4}
   22: {1,5}
   24: {1,1,1,2}
   26: {1,6}
   28: {1,1,4}
   30: {1,2,3}
   33: {2,5}
   34: {1,7}
   35: {3,4}
   38: {1,8}
   39: {2,6}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   46: {1,9}
   50: {1,3,3}
		

Crossrefs

For distinct instead of equal run-sums we appear to have A381636, counted by A381717.
For run-lengths instead of sums we have A382879, counted by complement of A383013.
These are the positions of 0 in A382877.
For more than one choice we have A383015.
The complement is A383110, counted by A383098.
Partitions of this type are counted by A383096.
For a unique choice we have A383099, counted by A383095.
A056239 adds up prime indices, row sums of A112798.
A304442 counts partitions with equal run-sums, ranks A353833.
A353851 counts compositions with equal run-sums, ranks A353848.

Programs

  • Mathematica
    Select[Range[100], Length[Select[Permutations[PrimePi/@Join @@ ConstantArray@@@FactorInteger[#]], SameQ@@Total/@Split[#]&]]==0&]

A383711 Number of integer partitions of n with no ones such that it is not possible to choose a family of pairwise disjoint strict integer partitions, one of each part.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 1, 1, 3, 3, 4, 6, 10, 11, 17, 19, 30, 36, 51, 61, 84, 96, 133, 160, 209, 253, 325, 393, 488, 598, 744
Offset: 0

Views

Author

Gus Wiseman, May 07 2025

Keywords

Comments

The Heinz numbers of these partitions are the odd terms of A382912.
Also the number of integer partitions of n with no ones whose normal multiset (in which i appears y_i times) is not a Look-and-Say partition.

Examples

			For y = (3,3) we can choose disjoint strict partitions ((2,1),(3)), so (3,3) is not counted under a(6).
The a(4) = 1 through a(12) = 10 partitions:
  (22)  .  (222)  (322)  (332)   (333)   (622)    (443)    (444)
                         (422)   (522)   (3322)   (722)    (822)
                         (2222)  (3222)  (4222)   (3332)   (3333)
                                         (22222)  (4322)   (4332)
                                                  (5222)   (4422)
                                                  (32222)  (5322)
                                                           (6222)
                                                           (33222)
                                                           (42222)
                                                           (222222)
		

Crossrefs

The complement without ones is counted by A383533.
The number of these families is A383706.
Allowing ones gives A383710 (ranks A382912), complement A383708 (ranks A382913).
A048767 is the Look-and-Say transform, fixed points A048768 (counted by A217605).
A098859 counts partitions with distinct multiplicities, compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    pof[y_]:=Select[Join@@@Tuples[IntegerPartitions/@y],UnsameQ@@#&];
    Table[Length[Select[IntegerPartitions[n],FreeQ[#,1]&&pof[#]=={}&]],{n,0,15}]
Showing 1-10 of 21 results. Next