A383034 Inverse Weigh transform of 2^(n-1).
1, 2, 2, 5, 6, 11, 18, 35, 56, 105, 186, 346, 630, 1179, 2182, 4115, 7710, 14588, 27594, 52482, 99858, 190743, 364722, 699216, 1342176, 2581425, 4971008, 9587574, 18512790, 35792449, 69273666, 134219795, 260300986, 505294125, 981706806, 1908881548, 3714566310
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..3000
- Christian G. Bower, PARI programs for transforms, 2007.
- N. J. A. Sloane, Maple programs for transforms, 2001-2020.
Formula
A383035 Inverse Weigh transform of 3^(n-1).
1, 3, 6, 18, 42, 113, 294, 798, 2128, 5823, 15918, 43998, 122010, 340617, 954394, 2686728, 7588770, 21509824, 61144062, 174289710, 498012094, 1426229109, 4092816966, 11767220068, 33890202192, 97761550215, 282424564744, 817018885362, 2366546223930, 6863002420335
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..2000
- Christian G. Bower, PARI programs for transforms, 2007.
- N. J. A. Sloane, Maple programs for transforms, 2001-2020.
Formula
A383042 Square array A(n,k), n >= 1, k >= 1, read by antidiagonals downwards, where A(n,k) is the n-th term of the inverse Euler transform of j-> k^(j-1).
1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 3, 0, 1, 4, 12, 15, 6, 0, 1, 5, 20, 42, 42, 9, 0, 1, 6, 30, 90, 156, 107, 18, 0, 1, 7, 42, 165, 420, 554, 294, 30, 0, 1, 8, 56, 273, 930, 1910, 2028, 780, 56, 0, 1, 9, 72, 420, 1806, 5155, 8820, 7350, 2128, 99, 0
Offset: 1
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 3, 4, 5, 6, ... 0, 2, 6, 12, 20, 30, 42, ... 0, 3, 15, 42, 90, 165, 273, ... 0, 6, 42, 156, 420, 930, 1806, ... 0, 9, 107, 554, 1910, 5155, 11809, ... 0, 18, 294, 2028, 8820, 28830, 77658, ... ...
Links
- Christian G. Bower, PARI programs for transforms, 2007.
- N. J. A. Sloane, Maple programs for transforms, 2001-2020.
Crossrefs
Programs
-
PARI
a(n, k) = sumdiv(n, d, moebius(n/d)*(k^d-(k-1)^d))/n;