A383045 Integers k for which the sum of digits of Fibonacci(k) is a Fibonacci number.
0, 1, 2, 3, 4, 5, 6, 8, 13, 28, 33, 49, 85, 94, 107, 286, 299, 366, 421, 422, 443, 657, 2807, 4483, 4531, 18694, 49140, 79033, 79850, 80290, 128306, 129049, 129618, 208245, 338888, 546571, 882766, 883822, 886342
Offset: 1
Examples
Fibonacci(8) = 21 and sumdigits(21) = 3, a Fibonacci number, so 8 is a term.
Programs
-
Maple
q:= n-> (t-> issqr(t+4) or issqr(t-4))(5*add(i, i=convert(combinat[fibonacci](n), base, 10))^2): select(q, [$0..4600])[]; # Alois P. Heinz, Jul 15 2025
-
Mathematica
fibQ[n_] := Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}]; Select[Range[0, 1000], fibQ[DigitSum[Fibonacci[#]]] &] (* Amiram Eldar, Apr 14 2025 *)
-
PARI
isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)); isok(k) = isfib(sumdigits(fibonacci(k)));
Extensions
a(36)-a(39) from Amiram Eldar, Apr 14 2025