A383275 Number of compositions of n such that any part 1 can be k different colors where k is the current record having appeared in the composition.
1, 1, 2, 5, 14, 42, 134, 454, 1634, 6245, 25321, 108779, 494443, 2374288, 12024257, 64100444, 358948674, 2106756217, 12931155910, 82823317389, 552400947902, 3829070637080, 27534807426150, 205066734143893, 1579309451332366, 12559941159979791, 103013928588389695
Offset: 0
Examples
a(3) = 5: (3), (1_a,2), (2,1_a), (2,1_b), (1_a,1_a,1_a).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..600
Programs
-
Maple
b:= proc(n, m) option remember; `if`(n=0, 1, add( b(n-j, max(j, m))*`if`(j=1, m, 1), j=1..n)) end: a:= n-> b(n, 1): seq(a(n), n=0..26); # Alois P. Heinz, Apr 23 2025
-
PARI
A_x(N) = {my(x='x+O('x^N)); Vec(prod(i=1,N,1+x^i/(1-i*x+(-x^2+x^(i+1))/(1-x))))} A_x(30)
Formula
G.f.: Product_{i>0} 1 + x^i/(1 - i*x - (x^2 - x^(i+1))/(1-x)).
Comments