A383111 Number of integer partitions of n having more than one permutation with all distinct run-lengths.
0, 0, 0, 0, 1, 3, 3, 8, 9, 13, 17, 26, 27, 43, 51, 61, 78, 103, 115, 153, 174, 213, 255, 316, 354, 442, 508, 610, 701, 848, 950, 1153, 1303, 1539, 1750, 2075, 2318, 2738, 3081
Offset: 0
Examples
The partition (2,1,1) has two permutations with all distinct run-lengths: (1,1,2), (2,1,1), so it is counted under a(4). The a(4) = 1 through a(9) = 13 partitions: (211) (221) (411) (322) (332) (441) (311) (3111) (331) (422) (522) (2111) (21111) (511) (611) (711) (2221) (5111) (3222) (4111) (22211) (6111) (22111) (41111) (22221) (31111) (221111) (33111) (211111) (311111) (51111) (2111111) (222111) (411111) (2211111) (3111111) (21111111)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], Length[Select[Permutations[#], UnsameQ@@Length/@Split[#]&]]>1&]],{n,0,15}]
Extensions
a(21)-a(38) from Jakub Buczak, May 04 2025