A383130 Coefficients of the linear terms in the continued fraction representation of the product logarithm.
1, 1, 1, 5, 17, 133, 1927, 13582711, 92612482895, 10402118970990527, 59203666396198716260449, 83631044830029201279016528831, 1149522186344339904123210420373026673, 458029700061597358458976211208014885543904637441, 203695852839150317577316770934832249000714992664672874100151
Offset: 1
Keywords
Examples
LambertW(x) = x/(1 + x/(1 + x/(2 + 5*x/(3 + 17*x/(10 + 133*x/(17 + 1927*x/(190 + ... ))))))).
Links
- Cristina B. Corcino, Roberto B. Corcino, and István Mező, Continued fraction expansions for the Lambert W function, Aequat. Math. 93, 485-498 (2019)
Crossrefs
Cf. A213236 (e.g.f. of LambertW).
Programs
-
Mathematica
ClearAll[cf, x]; cf[ O[x]] = {}; cf[ a0_ + O[x]] := {a0}; cf[ ps_] := Module[ {a0, a1, u, v}, a0 = SeriesCoefficient[ ps, {x, 0, 0}]; a1 = SeriesCoefficient[ ps, {x, 0, 1}]; u = Numerator[a1]; v = Denominator[a1]; Join[ If[ a0==0, {}, {a0}], Prepend[cf[ u*x/(ps-a0) - v], {u,v}]]]; (* Lambert W function W_0(x) up to O(x)^(M+1) *) M = 10; W0 = Sum[ x^n*(-n)^(n-1)/n!, {n, 1, M}] + x*O[x]^M; cf[W0] //InputForm (* {{1, 1}, {1, 1}, {1, 2}, {5, 3}, {17, 10}, {133, 17}, {1927, 190}, {13582711, 94423}, {92612482895, 1597966}, {10402118970990527, 8773814169}} *) (* Note: Change M to the number of terms to be generated *)
Extensions
More terms from Alois P. Heinz, Jun 17 2025
Comments