cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383130 Coefficients of the linear terms in the continued fraction representation of the product logarithm.

Original entry on oeis.org

1, 1, 1, 5, 17, 133, 1927, 13582711, 92612482895, 10402118970990527, 59203666396198716260449, 83631044830029201279016528831, 1149522186344339904123210420373026673, 458029700061597358458976211208014885543904637441, 203695852839150317577316770934832249000714992664672874100151
Offset: 1

Views

Author

Jacob DeMoss, Jun 17 2025

Keywords

Comments

The continued fraction only produces values for the principal branch of the product logarithm.

Examples

			LambertW(x) = x/(1 + x/(1 + x/(2 + 5*x/(3 + 17*x/(10 + 133*x/(17 + 1927*x/(190 + ... ))))))).
		

Crossrefs

Cf. A213236 (e.g.f. of LambertW).

Programs

  • Mathematica
    ClearAll[cf, x];
    cf[ O[x]] = {};
    cf[ a0_ + O[x]] := {a0};
    cf[ ps_] := Module[ {a0, a1, u, v},
      a0 = SeriesCoefficient[ ps, {x, 0, 0}];
      a1 = SeriesCoefficient[ ps, {x, 0, 1}];
      u = Numerator[a1]; v = Denominator[a1];
      Join[ If[ a0==0, {}, {a0}],
         Prepend[cf[ u*x/(ps-a0) - v], {u,v}]]];
    (* Lambert W function W_0(x) up to O(x)^(M+1) *)
    M = 10; W0 = Sum[ x^n*(-n)^(n-1)/n!, {n, 1, M}] + x*O[x]^M;
    cf[W0] //InputForm
    (* {{1, 1}, {1, 1}, {1, 2}, {5, 3}, {17, 10}, {133, 17},
     {1927, 190}, {13582711, 94423}, {92612482895, 1597966},
     {10402118970990527, 8773814169}} *)
    (* Note: Change M to the number of terms to be generated *)

Extensions

More terms from Alois P. Heinz, Jun 17 2025