A383140 Triangle read by rows: the coefficients of polynomials (1/3^(m-n)) * Sum_{k=0..m} k^n * 2^(m-k) * binomial(m,k) in the variable m.
1, 0, 1, 0, 2, 1, 0, 2, 6, 1, 0, -6, 20, 12, 1, 0, -30, 10, 80, 20, 1, 0, 42, -320, 270, 220, 30, 1, 0, 882, -1386, -770, 1470, 490, 42, 1, 0, 954, 7308, -15064, 2800, 5180, 952, 56, 1, 0, -39870, 101826, -39340, -61992, 29820, 14364, 1680, 72, 1, 0, -203958, -40680, 841770, -666820, -86940, 139440, 34020, 2760, 90, 1
Offset: 0
Examples
f_n(m) = (1/3^(m-n)) * Sum_{k=0..m} k^n * 2^(m-k) * binomial(m,k). f_0(m) = 1. f_1(m) = m. f_2(m) = 2*m + m^2. f_3(m) = 2*m + 6*m^2 + m^3. Triangle begins: 1; 0, 1; 0, 2, 1; 0, 2, 6, 1; 0, -6, 20, 12, 1; 0, -30, 10, 80, 20, 1; 0, 42, -320, 270, 220, 30, 1; ...
Links
- Eric Weisstein's World of Mathematics, Falling Factorial
Crossrefs
Programs
-
PARI
T(n, k) = sum(j=k, n, 3^(n-j)*stirling(n, j, 2)*stirling(j, k, 1));
-
Sage
def a_row(n): s = sum(3^(n-k)*stirling_number2(n, k)*falling_factorial(x, k) for k in (0..n)) return expand(s).list() for n in (0..10): print(a_row(n))
Formula
T(n,k) = Sum_{j=k..n} 3^(n-j) * Stirling2(n,j) * Stirling1(j,k).
T(n,k) = [x^k] Sum_{k=0..n} 3^(n-k) * Stirling2(n,k) * FallingFactorial(x,k).
E.g.f. of column k (with leading zeros): g(x)^k / k! with g(x) = log(1 + (exp(3*x) - 1)/3).