cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383155 a(n) = Sum_{k=0..n} k^6 * (-1)^k * 3^(n-k) * binomial(n,k).

Original entry on oeis.org

0, -1, 58, -180, -1304, -2920, 1008, 34496, 163840, 525312, 1285120, 2241536, 1124352, -12113920, -72052736, -282378240, -924581888, -2699493376, -7201751040, -17666670592, -39507722240, -77918109696, -121883328512, -78622228480, 453588811776, 2904974950400, 11885785120768
Offset: 0

Views

Author

Seiichi Manyama, Apr 18 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[k^6 * (-1)^k * 3^(n-k) * Binomial(n,k): k in [0..n]]: n in [0..29]]; // Vincenzo Librandi, Apr 23 2025
  • Mathematica
    Table[Sum[(k^6*(-1)^k*3^(n-k))*Binomial[n,k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 23 2025 *)
  • PARI
    a(n) = 2^(n-6)*(-4368*n+7290*n^2-3555*n^3+645*n^4-45*n^5+n^6);
    

Formula

a(n) = 2^(n-6) * (-4368*n + 7290*n^2 - 3555*n^3 + 645*n^4 - 45*n^5 + n^6).