A383162 Consecutive states of the linear congruential pseudo-random number generator (7200*s + 1) mod 23^4 when started at s=1.
1, 7201, 76616, 68590, 208477, 247118, 20523, 9553, 220556, 185367, 80672, 168326, 235671, 155218, 164488, 26489, 149080, 185766, 155062, 160652, 111548, 1931, 190992, 3727, 249506, 143822, 106701, 83656, 105369, 7850, 271960, 64524, 36741, 85456, 192683
Offset: 1
Links
- Sean A. Irvine, Table of n, a(n) for n = 1..10000
- J. Eichenauer-Herrmann and H. Grothe, Upper bounds for the Beyer ratios of linear congruential generators, J Comp. Appl. Math., 31 1 (1990), 73-80.
- W. E. Sharp and Carter Bays, A review of portable random number generators, Computers and Geosciences, 18, 1 (1982), 79-87.
- Index entries for sequences related to pseudo-random numbers.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, n, irem(7200*a(n-1)+1, 279841)) end: seq(a(n), n=1..45); # after Alois P. Heinz
-
Mathematica
NestList[Mod[7200*# + 1, 23^4] &, 1, 50] (* Paolo Xausa, Jun 18 2025 *)
Formula
a(n) = (7200*a(n-1) + 1) mod 23^4.
Comments