cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A383149 Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = (-1)^k * [m^k] (1/2^(m-n)) * Sum_{k=0..m} k^n * (-1)^m * 3^(m-k) * binomial(m,k).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 12, 9, 1, 0, 66, 75, 18, 1, 0, 480, 690, 255, 30, 1, 0, 4368, 7290, 3555, 645, 45, 1, 0, 47712, 88536, 52290, 12705, 1365, 63, 1, 0, 608016, 1223628, 831684, 249585, 36120, 2562, 84, 1, 0, 8855040, 19019664, 14405580, 5073012, 915705, 87696, 4410, 108, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 18 2025

Keywords

Examples

			f_0(m) = 1.
f_1(m) =      -m.
f_2(m) =    -3*m +     m^2.
f_3(m) =   -12*m +   9*m^2 -     m^3.
f_4(m) =   -66*m +  75*m^2 -  18*m^3 +    m^4.
f_5(m) =  -480*m + 690*m^2 - 255*m^3 + 30*m^4 - m^5.
Triangle begins:
  1;
  0,     1;
  0,     3,     1;
  0,    12,     9,     1;
  0,    66,    75,    18,     1;
  0,   480,   690,   255,    30,    1;
  0,  4368,  7290,  3555,   645,   45,  1;
  0, 47712, 88536, 52290, 12705, 1365, 63, 1;
  ...
		

Crossrefs

Columns k=0..3 give A000007, A123227(n-1), A383163, A383164.
Row sums give A122704.

Programs

  • PARI
    T(n, k) = sum(j=k, n, 2^(n-j)*stirling(n, j, 2)*abs(stirling(j, k, 1)));
    
  • Sage
    def a_row(n):
        s = sum(2^(n-k)*stirling_number2(n, k)*rising_factorial(x, k) for k in (0..n))
        return expand(s).list()
    for n in (0..9): print(a_row(n))

Formula

f_n(m) = (1/2^(m-n)) * Sum_{k=0..m} k^n * (-1)^m * 3^(m-k) * binomial(m,k).
T(n,k) = [m^k] f_n(-m).
T(n,k) = Sum_{j=k..n} 2^(n-j) * Stirling2(n,j) * |Stirling1(j,k)|.
T(n,k) = [x^k] Sum_{k=0..n} 2^(n-k) * Stirling2(n,k) * RisingFactorial(x,k).
Sum_{k=0..n} (-1)^k * T(n,k) = f_m(1) = -2^(n-1) for n > 0.
E.g.f. of column k (with leading zeros): g(x)^k / k! with g(x) = -log(1 - (exp(2*x) - 1)/2).

A383171 Expansion of e.g.f. log(1 + log(1 - 2*x)/2)^2 / 2.

Original entry on oeis.org

0, 0, 1, 9, 91, 1090, 15298, 247352, 4537132, 93195696, 2120623984, 52973194560, 1441635171040, 42464913775232, 1346297567292416, 45715740985471744, 1655552663185480448, 63698261991541393408, 2595107348458704209920, 111613055867327344582656
Offset: 0

Views

Author

Seiichi Manyama, Apr 18 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=2, n, 2^(n-k)*abs(stirling(n, k, 1)*stirling(k, 2, 1)));

Formula

a(n) = Sum_{k=2..n} 2^(n-k) * |Stirling1(n,k) * Stirling1(k,2)|.
a(n) ~ sqrt(Pi) * log(n) * 2^(n + 1/2) * n^(n - 1/2) / (exp(1) - exp(-1))^n * (1 + (gamma + log(2) - log(exp(2)-1))/log(n)), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Apr 18 2025

A383165 Expansion of e.g.f. log(1 + (exp(2*x) - 1)/2)^2 / 2.

Original entry on oeis.org

0, 0, 1, 3, 3, -10, -30, 112, 588, -2448, -18960, 87296, 911328, -4599296, -61152000, 335523840, 5464904448, -32363874304, -627708979200, 3987441516544, 90133968949248, -610866587369472, -15823700431503360, 113884455221854208, 3334995367266582528, -25385597162671308800
Offset: 0

Views

Author

Seiichi Manyama, Apr 18 2025

Keywords

Crossrefs

Column k=2 of A209849.

Programs

  • PARI
    a(n) = sum(k=2, n, 2^(n-k)*stirling(n, k, 2)*stirling(k, 2, 1));

Formula

a(n) = Sum{k=2..n} 2^(n-k) * Stirling2(n,k) * Stirling1(k,2).
Showing 1-3 of 3 results.