cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A383149 Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = (-1)^k * [m^k] (1/2^(m-n)) * Sum_{k=0..m} k^n * (-1)^m * 3^(m-k) * binomial(m,k).

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 12, 9, 1, 0, 66, 75, 18, 1, 0, 480, 690, 255, 30, 1, 0, 4368, 7290, 3555, 645, 45, 1, 0, 47712, 88536, 52290, 12705, 1365, 63, 1, 0, 608016, 1223628, 831684, 249585, 36120, 2562, 84, 1, 0, 8855040, 19019664, 14405580, 5073012, 915705, 87696, 4410, 108, 1
Offset: 0

Views

Author

Seiichi Manyama, Apr 18 2025

Keywords

Examples

			f_0(m) = 1.
f_1(m) =      -m.
f_2(m) =    -3*m +     m^2.
f_3(m) =   -12*m +   9*m^2 -     m^3.
f_4(m) =   -66*m +  75*m^2 -  18*m^3 +    m^4.
f_5(m) =  -480*m + 690*m^2 - 255*m^3 + 30*m^4 - m^5.
Triangle begins:
  1;
  0,     1;
  0,     3,     1;
  0,    12,     9,     1;
  0,    66,    75,    18,     1;
  0,   480,   690,   255,    30,    1;
  0,  4368,  7290,  3555,   645,   45,  1;
  0, 47712, 88536, 52290, 12705, 1365, 63, 1;
  ...
		

Crossrefs

Columns k=0..3 give A000007, A123227(n-1), A383163, A383164.
Row sums give A122704.

Programs

  • PARI
    T(n, k) = sum(j=k, n, 2^(n-j)*stirling(n, j, 2)*abs(stirling(j, k, 1)));
    
  • Sage
    def a_row(n):
        s = sum(2^(n-k)*stirling_number2(n, k)*rising_factorial(x, k) for k in (0..n))
        return expand(s).list()
    for n in (0..9): print(a_row(n))

Formula

f_n(m) = (1/2^(m-n)) * Sum_{k=0..m} k^n * (-1)^m * 3^(m-k) * binomial(m,k).
T(n,k) = [m^k] f_n(-m).
T(n,k) = Sum_{j=k..n} 2^(n-j) * Stirling2(n,j) * |Stirling1(j,k)|.
T(n,k) = [x^k] Sum_{k=0..n} 2^(n-k) * Stirling2(n,k) * RisingFactorial(x,k).
Sum_{k=0..n} (-1)^k * T(n,k) = f_m(1) = -2^(n-1) for n > 0.
E.g.f. of column k (with leading zeros): g(x)^k / k! with g(x) = -log(1 - (exp(2*x) - 1)/2).

A383166 Expansion of e.g.f. log(1 + (exp(2*x) - 1)/2)^3 / 6.

Original entry on oeis.org

0, 0, 0, 1, 6, 15, -15, -210, 28, 5292, 4140, -208560, -369864, 11847264, 33630688, -917280000, -3642944640, 92903375616, 479824306944, -11926470604800, -76477342307840, 1892813347934208, 14591875555074048, -363945109924577280, -3293838565260693504, 83374884181664563200
Offset: 0

Views

Author

Seiichi Manyama, Apr 18 2025

Keywords

Crossrefs

Column k=3 of A209849.
Cf. A383164.

Programs

  • PARI
    a(n) = sum(k=3, n, 2^(n-k)*stirling(n, k, 2)*stirling(k, 3, 1));

Formula

a(n) = Sum{k=3..n} 2^(n-k) * Stirling2(n,k) * Stirling1(k,3).

A383172 Expansion of e.g.f. -log(1 + log(1 - 2*x)/2)^3 / 6.

Original entry on oeis.org

0, 0, 0, 1, 18, 295, 5115, 96838, 2012724, 45825148, 1137703140, 30643915984, 891001127016, 27835772321344, 930387252759328, 33141746095999552, 1253756533365348992, 50210676392866266880, 2122613151692627299584, 94470824166941637093376
Offset: 0

Views

Author

Seiichi Manyama, Apr 18 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=3, n, 2^(n-k)*abs(stirling(n, k, 1)*stirling(k, 3, 1)));

Formula

a(n) = Sum_{k=3..n} 2^(n-k) * |Stirling1(n,k) * Stirling1(k,3)|.
Showing 1-3 of 3 results.