A383175 Number of compositions of n such that any fixed point k can be k different colors.
1, 1, 2, 5, 10, 22, 48, 101, 213, 450, 945, 1961, 4064, 8385, 17242, 35332, 72141, 146924, 298552, 605377, 1225277, 2475912, 4995754, 10067848, 20267680, 40762951, 81916919, 164504411, 330155437, 662265817, 1327860471, 2661376529, 5332341881, 10680912173
Offset: 0
Examples
a(3) = 5 counts: (3), (2,1), (1_a,2_a), (1_a,2_b), (1_a,1,1).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, add( `if`(n<=i+j, ceil(2^(n-j-1)), b(n-j, i+1))* `if`(i=j, j, 1), j=1..n)) end: a:= n-> b(n, 1): seq(a(n), n=0..33); # Alois P. Heinz, Apr 18 2025
-
PARI
A_x(N) = {my(x='x+O('x^N)); Vec(1+sum(i=1,N, prod(j=1,i, j*x^j-x^j+x/(1-x))))} A_x(30)
Formula
G.f.: 1 + Sum_{i>0} Product_{j=1..i} ( j*x^j - x^j + x/(1-x) ).