cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383175 Number of compositions of n such that any fixed point k can be k different colors.

Original entry on oeis.org

1, 1, 2, 5, 10, 22, 48, 101, 213, 450, 945, 1961, 4064, 8385, 17242, 35332, 72141, 146924, 298552, 605377, 1225277, 2475912, 4995754, 10067848, 20267680, 40762951, 81916919, 164504411, 330155437, 662265817, 1327860471, 2661376529, 5332341881, 10680912173
Offset: 0

Views

Author

John Tyler Rascoe, Apr 18 2025

Keywords

Examples

			a(3) = 5 counts: (3), (2,1), (1_a,2_a), (1_a,2_b), (1_a,1,1).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, add(
         `if`(n<=i+j, ceil(2^(n-j-1)), b(n-j, i+1))*
         `if`(i=j, j, 1), j=1..n))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..33);  # Alois P. Heinz, Apr 18 2025
  • PARI
    A_x(N) = {my(x='x+O('x^N)); Vec(1+sum(i=1,N, prod(j=1,i, j*x^j-x^j+x/(1-x))))}
    A_x(30)

Formula

G.f.: 1 + Sum_{i>0} Product_{j=1..i} ( j*x^j - x^j + x/(1-x) ).