cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383177 Sphenic numbers k such that floor(log(k)/log(lpf(k))) = 1+floor(log(k)/log(p)) for all primes p | k such that p > lpf(k), where lpf = A020639(k).

Original entry on oeis.org

1001, 1309, 1547, 1729, 2093, 2261, 3553, 4199, 4301, 4807, 5681, 6061, 6479, 7337, 7843, 8671, 9269, 9361, 9889, 10373, 10879, 11063, 11339, 11687, 11803, 11891, 12121, 12617, 13079, 13717, 13949, 13981, 14911, 15283, 15457, 16211, 16523, 17081, 17329, 17719
Offset: 1

Views

Author

Michael De Vlieger, Apr 21 2025

Keywords

Comments

Subset of A382022, a subset of A007304.
Let primes p, q, r, p < q < r divide k.
Then floor(log(k)/log(p)) = 3 and floor(log(k)/log(q)) = floor(log(k)/log(r)) = 2.
Row a(n) of A162306 is the set {1, p, p^2, p^3, q, p*q, p^2*q, q^2, p*q^2, r, p*r, p^2*r, q*r, p*q*r, r^2}.

Examples

			Let s(n) = A010846(a(n)).
Table of a(n) for n = 1..12, showing prime factors of a(n) and
 n   a(n)  facs(a(n))  s(n)
---------------------------
 1   1001    7*11*13    15
 2   1309    7*11*17    15
 3   1547    7*13*17    15
 4   1729    7*13*19    15
 5   2093    7*13*23    15
 6   2261    7*17*19    15
 7   3553   11*17*19    15
 8   4199   13*17*19    15
 9   4301   11*17*23    15
10   4807   11*19*23    15
11   5681   13*19*23    15
12   6061   11*19*29    15
Let f(p,k) = floor(log(k)/log(p)) and let w be the list of f(p,k) across the sorted list of distinct prime factors of k.
30 = 2*3*5 is not in the sequence since f(30,2) = 4, f(30,3) = 3, f(30,5) = 2.
a(1) = 1001 = 7*11*13; f(7,1001) = 3, f(11,1001) = 2, f(13,1001) = 2.
a(2) = 1309 = 7*11*17; w(1309) = {3,2,2}, etc.
Pattern of numbers in row a(n) of A275280:
  Level r^0                    Level r^1               Level r^2
  1,   p,     p^2,  p^3   |    r,   p*r,   p^2*r   |   r^2
  q,   p*q,   p^2*q       |    q*r, p*q*r          |
  q^2, p*q^2;             |
Example: k = 1001 = 7*11*13
    1,   7,  49, 343   |    13,   91, 637   |   169
   11,  77, 539        |   143, 1001        |
  121, 847             |
		

Crossrefs

Intersection of A380995 and A382022.

Programs

  • Mathematica
    f[om_, lm_ : 0] := Block[{f, i, j, k, nn, w}, i = Abs[om]; j = 1;
      If[lm == 0, nn = Times @@ Prime@ Range[i], nn = Abs[lm]]; w = ConstantArray[1, i];
      Union@ Reap[Do[
        While[Set[k, Times @@ Map[Prime, Accumulate@w]]; k <= nn,
          If[Or[k == 1, Union[#2] == #1 - 1 & @@
            TakeDrop[Map[Floor@Log[#, k] &, FactorInteger[k][[All, 1]] ], 1] ],
            Sow[k]];
          j = 1; w[[-j]]++];
          If[j == i, Break[], j++; w[[-j]]++;
            w = PadRight[w[[;; -j]], i, 1]], {n, Infinity}] ][[-1, 1]] ];
    f[3, 20000]

Formula

A010846(a(n)) = 15.