A383224 Decimal expansion Sum_{p primes} log(p)^2*p^2/(p^2-1)^2.
8, 8, 4, 4, 8, 1, 8, 3, 3, 9, 6, 3, 5, 2, 3, 8, 8, 5, 1, 9, 6, 5, 3, 6, 1, 5, 3, 8, 7, 0, 6, 5, 1, 1, 6, 8, 5, 8, 8, 6, 6, 7, 3, 3, 2, 6, 3, 8, 7, 1, 1, 3, 3, 5, 1, 8, 1, 8, 3, 9, 2, 8, 6, 5, 7, 7, 8, 6, 0, 4, 5, 7, 1, 6, 5, 2, 7, 8, 8, 6, 3, 4, 3, 1, 2, 9, 5, 1, 0, 2, 2, 9, 5, 2, 4, 5, 2, 5, 4, 7, 0, 5, 6, 0, 1
Offset: 0
Examples
0.8844818339635238851965361...
Links
- Bill Allombert, SumEulerLog procedure, Pari gp procedures.
Crossrefs
Cf. A345364.
Programs
-
Maple
Zeta(2,2)/Zeta(2) -Zeta(1,2)^2/Zeta(2)^2 ; evalf(%) ; # R. J. Mathar, May 07 2025
-
Mathematica
RealDigits[(6 (-6 Zeta'[2]^2 + Pi^2 Zeta''[2]))/Pi^4, 10, 105][[1]]
-
PARI
/* Procedure by Bill Allombert */ default(realprecision, 105); SumEulerLog(f,s=1,a=2,d=1)= { my(p=variable(f)); if(type(d)!="t_INT",error("incorrect type in SumEulerLog")); if (d<0, d=-d; for(i=1,d, f=deriv(f)*p); (-1)^d*intnum(t=1,[oo,log(2)*s],(t-1)^(d-1)*sumeulerrat(f,t*s,a))/gamma(d) ,d==0, sumeulerrat(f,s,a) ,d>0, my(S=0,v); my(prec=getlocalbitprec()); f=subst(f,'p,1/p)+O(p^prec); for(i=1,d, f=intformal(f/p)); v = valuation(f,p); f = truncate(f); for(i=v,prec/(v-1), S += polcoef(f,i)*derivnum(t=1,sumeulerrat(1/p,t*i*s,a),d)); (-1)^d*S); } SumEulerLog(p^2/(p^2-1)^2,,,2)