cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A383239 Integers k such that there exists an integer 0

Original entry on oeis.org

1740, 7776, 22428, 55968, 106140, 143910, 198792, 246510, 309582, 326196, 411138, 421596, 428256, 590112, 639288, 697158, 870552, 941094, 958716, 1060956, 1087776, 1105884, 1269828, 1341660, 1361568, 1447620, 1495494, 1512810, 1626324, 1727940, 1819392
Offset: 1

Views

Author

S. I. Dimitrov, Apr 20 2025

Keywords

Comments

S. I. Dimitrov introduced the notion of (alpha_1,...,alpha_k)-multiamicable k-tuples.
The asymptotic density of (alpha_1, alpha_2)-multiamicable pairs relative to the positive integers is 0.

Examples

			For k=2, alpha_1=1, alpha_2=2 we have (1560, 1740), (7380, 7776), (20664, 22428), (543456, 590112), (588744, 639288),
		

Crossrefs

Programs

  • PARI
    isok(k) = my(s=sigma(k)); for (m=1, k-1, if ((sigma(m)==s) && (s==m+2*k), return(m))); \\ Michel Marcus, Apr 28 2025

Formula

We say that the natural numbers n_1,..., n_k form an (alpha_1,...,alpha_k)-multiamicable k-tuple if sigma(n_1)=sigma(n_2)=...=sigma(n_k)=alpha_1n_1+alpha_2n_2+...+alpha_kn_k, where alpha_1,...,alpha_k are positive integers, where sigma(n) is the sum of the divisors of n.

Extensions

More terms from Sean A. Irvine, May 04 2025