A383239
Integers k such that there exists an integer 0
1740, 7776, 22428, 55968, 106140, 143910, 198792, 246510, 309582, 326196, 411138, 421596, 428256, 590112, 639288, 697158, 870552, 941094, 958716, 1060956, 1087776, 1105884, 1269828, 1341660, 1361568, 1447620, 1495494, 1512810, 1626324, 1727940, 1819392
Offset: 1
Keywords
Examples
For k=2, alpha_1=1, alpha_2=2 we have (1560, 1740), (7380, 7776), (20664, 22428), (543456, 590112), (588744, 639288),
Links
- S. I. Dimitrov, Generalizations of amicable numbers, arXiv:2408.07387 [math.NT], 2024.
Programs
-
PARI
isok(k) = my(s=sigma(k)); for (m=1, k-1, if ((sigma(m)==s) && (s==m+2*k), return(m))); \\ Michel Marcus, Apr 28 2025
Formula
We say that the natural numbers n_1,..., n_k form an (alpha_1,...,alpha_k)-multiamicable k-tuple if sigma(n_1)=sigma(n_2)=...=sigma(n_k)=alpha_1n_1+alpha_2n_2+...+alpha_kn_k, where alpha_1,...,alpha_k are positive integers, where sigma(n) is the sum of the divisors of n.
Extensions
More terms from Sean A. Irvine, May 04 2025
Comments