A383244 Primes of the form p(k)*p(k+1)*(p(k+1) - p(k)) + 1 sorted by increasing k.
7, 31, 71, 647, 4003, 6883, 3527, 14947, 34603, 20807, 23327, 173347, 73727, 503869, 103967, 145799, 450403, 194687, 669283, 848203, 1193443, 1775563, 649799, 1976803, 2088547, 2131243, 4687069, 2534947, 2581963, 5338237, 3250123, 3411043, 1555847, 5346763
Offset: 1
Keywords
Programs
-
Maple
=q:= 2; R:= NULL: count:= 0: while count < 100 do p:= q; q:= nextprime(q); v:= p*q*(q-p)+1; if isprime(v) then R:= R,v; count:= count+1 fi; od: R; # Robert Israel, May 11 2025
-
Mathematica
z = 200; p[n_] := Prime[n]; f[n_] := p[n]*p[n + 1]*(p[n + 1] - p[n]) t1 = Table[f[n] - 1, {n, 1, z}]; (* A383241 *) t2 = Table[f[n] + 1, {n, 1, z}]; (* A383242 *) Select[t1, PrimeQ[#] &] (* A383243 *) Select[t2, PrimeQ[#] &] (* A383244 *)
-
PARI
select(isprime, vector(200, k, prime(k)*prime(k+1)*(prime(k+1) - prime(k)) + 1)) \\ Michel Marcus, May 12 2025
Comments