A383257 Let p = prime(n), then a(n) is the non-p-smooth part of (p-1)!+1.
1, 1, 1, 103, 329891, 2834329, 1230752346353, 336967037143579, 48869596859895986087, 10513391193507374500051862069, 8556543864909388988268015483871, 10053873697024357228864849950022572972973, 19900372762143847179161250477954046201756097561, 32674560877973951128910293168477013254334511627907
Offset: 1
Keywords
Examples
a(6) = 2834329 because ((13 - 1)! + 1)/w = (12! + 1)/w = (13^2*2834329)/w = 2834329, where w is the product of the towers of ((13 - 1)! + 1) subordinate to 13, w equaling 13^2.
Programs
-
PARI
a(n) = my(p=prime(n), f=factor((p-1)! + 1, nextprime(p+1))); for (i=1, #f~, if (f[i,1] <= p, f[1,1] = 1)); factorback(f); \\ Michel Marcus, Apr 30 2025
-
Python
from sympy import prime, factorial def A383257(n): p = prime(n) f = factorial(p-1)+1 a, b = divmod(f,p) while not b: f = a a, b = divmod(f,p) return f # Chai Wah Wu, May 12 2025
Extensions
More terms from Michel Marcus, Apr 30 2025
Comments
Chai Wah Wu, May 11 2025