A383328 Numbers that have the same set of digits as the sum of the squares of their digits.
0, 1, 155, 224, 242, 334, 343, 422, 433, 505, 515, 550, 551, 1388, 1788, 1838, 1878, 1883, 1887, 3188, 3334, 3336, 3343, 3363, 3433, 3633, 3818, 3881, 4333, 5005, 5050, 5500, 6333, 7188, 7818, 7881, 8138, 8178, 8183, 8187, 8318, 8381, 8718, 8781, 8813, 8817, 8831
Offset: 1
Examples
155 and 1^2 + 5^2 + 5^2 = 51 have the same set of digits {1,5}, so 155 is a term.
Programs
-
Mathematica
q[k_] := Module[{d = IntegerDigits[k]}, Union[d] == Union[IntegerDigits[Total[d^2]]]]; Select[Range[0, 10000], q] (* Amiram Eldar, Apr 23 2025 *)
-
PARI
isok(k) = my(d=digits(k)); Set(d) == Set(digits(sum(i=1, #d, d[i]^2))); \\ Michel Marcus, May 13 2025
-
Python
def ok(n): return set(s:=str(n)) == set(str(sum(int(d)**2 for d in s))) print([k for k in range(10**4) if ok(k)]) # Michael S. Branicky, Apr 23 2025